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Group-theoretical foundations for the concept of mandalas have been formu-
lated algebraically and diagrammatically in order to reinforce the spread of the
unit-subduced-cycle-index (USCI) approach (S. Fujita, Symmetry and Combinatorial
Enumeration in Chemistry, Springer-Verlag, Berlin-Heidelberg, 1991). Thus, after the
introducton of right coset representations (RCR) (H\)G and left coset representations
(LCR) G(/H) for the group G and its subgroup H, a regular body of G-symmetry is
defined as a diagrammatical expression for a right regular representation (C1\)G, which
is an extreme case of RCRs. The |G| substitution positions of the regular body as a
reference are numbered in accord with the numbering of the elements of G and seg-
mented into |G|/|H| of H-segments, which are governed by the RCR (H\)G. By regard-
ing each H-segment as a substitution position, the H-segmented regular body is reduced
into a reduced regular body, which can be regarded as a secondary skeleton for gener-
ating a molecule. The reference regular body (or H-segmented one) is operated by every
symmetry operations of G to generate regular bodies (or H-segmented ones), which are
placed on the vertices of a hypothetical regular body of G-symmetry. The resulting dia-
gram (a nested regular body) is called a mandala (or a reduced mandala), which is a
diagrammatical expression for specifying the G-symmetry of a molecule. The effect of a
K-subduction on the regular bodies of a mandala (or a reduced mandala) results in the
K-assemblage of the mandala (or the reduced mandala), where the resulting K-assem-
blies governed by the LCR G(/K) construct a |G|/|K|-membered orbit, which corre-
sponds to a molecule of K-symmetry. The sphericity of the RCR (or the LCR) is used
to characterize symmetrical properties of substitution positions and those of stereoi-
somers. The fixed-point vector for each mandala (or reduced mandala) in terms of row
view and the number of fixed points of K-assembled mandalas (or K-assembled reduced
mandalas) in terms of column view are compared to accomplish combinatorial enumer-
ation of stereoisomers. The relationship between a mandala and a reordered multipli-
cation table is discussed.
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1. Introduction

Stereochemistry in a broader meaning contains two main fields, i.e., intra-
molecular stereochemistry (i.e., stereochemistry in a narrower meaning) and in-
termolecular stereochemistry (i.e., stereoisomerism). These fields are so closely
related to each other that such terms as “enantiotopic”, “diastereotopic”, and
“stereoheterotopic” for the former field of stereochemistry have been coined after
such terms as “enantiomeric”, “diastereomeric”, and “stereoisomeric” for stereo-
isomerism [1–3]. However, the close relationship has been discussed only in a
descriptive manner in most conventional textbooks on stereochemistry [4–7]. In
particular, a common mathematical framework to be applied to both of the fields
has not been so fully developed that chemical combinatorics for enumerating ste-
reoisomers have not gained popularity, although there have been reported several
pioneering works [8–11].

To pursue such a common mathematical framework, we have developed the
unit-subduced-cycle-index (USCI) approach [12], where the concept of sphericity
has been shown to be a key concept for comprehending intramolecular stereo-
chemistry and stereoisomerism. The concept of sphericity has been applied suc-
cessfully to descriptive stereochemistry (both intramolecular stereochemistry and
stereoisomerism) [13, 14] as well as to chemical combinatorics [15–17]. The ver-
satility of the USCI approach based on the sphericity concept in both of the
fields of stereochemistry has been summarized in recent reviews [18–20].

In spite of the potentiality of the USCI approach for organic chemists, bar-
riers to access to it have been pointed out in a book review [21] on Fujita’s
monograph on the USCI approach [12] and have been recently referred to as “an
organic chemistry paradox in the Era of Fujita” in a book [22] and in a review
[23]. To remove such barriers, we have reported a more intuitive definition of the
sphericity concept in order to aim mainly at systematizing intramolecular stereo-
chemistry [24, 25]. By following the intuitive definition, the importance of the
sphericity concept has been discussed for introductory courses of stereochemistry
[26, 27].

On the other hand, the USCI approach to stereoisomerism (intermolecular
stereochemistry) has been visualized in terms of “graphical models”[23, 28–30].
The visualization due to the graphical models, however, has not fully demon-
strated the common mathematical framework covering both of the fields. More-
over, the visualization has not explicitly involved the concept of sphericity so that
it has not directly aimed at stereoisomer enumeration, one of the most important
disciplines accomplished by Fujita’s USCI approach. In order to clarify the use-
fulness of the sphericity concept in the stereoisomer enumeration as well as to
demonstrate the common mathematical framework covering both of the fields,
we have proposed the concept of mandalas, which are diagrammatical expres-
sions of stereoisomers [31–33]. However, the original disclosure for defining the
concept of mandalas is rather intuitive because of the didactic purpose of the
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papers [31–33]. It is desirable to provide more group-theoretical foundations in
order that we will go on further discussions or applications of the mandala con-
cept.

The present paper will demonstrate group-theoretical foundations for the
concept of mandalas as diagrammatical expressions of stereoisomers. In particu-
lar, right and left coset representations (LCR) derived from multiplication tables
of groups will be discussed to introduce the concept of mandalas. Thereby, the
sphericity concept will be demonstrated in a renewed fashion in connection with
the mandala concept.

2. Coset representations, marks, and sphericities

Before we will propose group-theoretical foundations for the concept of
mandala, we shall discuss coset representation and marks, which are rather old
mathematical concepts introduced by Burnside [34] but revived recently to dis-
cuss stereochemistry [12]. A new matter added in this section is a theoretically
meaningful discrimination between right and left coset representations, which
have been usually regarded as equivalent in the traditional group theory. In addi-
tion, this section is devoted to introduce the concepts of sphericity and sphericity
indices, which give a theoretical basis of Fujita’s USCI approach [12] for inte-
grating intramolecular stereochemistry, stereoisomerism, and chemical combina-
torics.

2.1. Right and left coset representations

Let the symbol G represent a group of finite order (|G|). Then, its subgroup
H of order |H| causes a partition of the group G so as to generate a right coset
decomposition:

G = Hg1 + Hg2 + · · · + Hgr , (1)

where we place g1 = I and r = |G|/|H|. Thereby, a set of right cosets H\G is
constructed as follows:

H\G = {Hg1, Hg2, . . . , Hgr }. (2)

When each of the right cosets is multiplied by an operation g (∈ G) from
the right-side direction, the following permutation is obtained:

g ∼
(

Hg1 Hg2 · · · Hgr
Hg1g Hg2g · · · Hgr g

)
, (3)

∼
(

1 2 · · · r
t [R]
g1 t [R]

g2 · · · t [R]
gr

)
= p[R]

g , (4)
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where the degree of each permutation is equal to r = |G|/|H|. When g runs over
G, the permutation p[R]

g constructs a set of permutations:

(H\)G = {p[R]
g | ∀g ∈ G}, (5)

which is called a right coset representation (RCR) of G modulo H. Note that,
although the symbol G(/H) is used to designate right cosets in Fujita’s book
[12], the present paper adopts the symbol (H\)G in order to discriminate right
cosets from left cosets.

On the same line, a subgroup K of order |K| causes a left coset decompo-
sition,

G = g̃1K + g̃2K + · · · + g̃sK, (6)

where we place g̃1 = I and s = |G|/|K|. Thereby, we construct a set of left cosets
G/K as follows:

G/K = {g̃1K, g̃2K, . . . , g̃sK}. (7)

When each of the left cosets is multiplied by an operation g (∈ G) from the
left-side direction, the following permutation is obtained:

g ∼
(

g̃1K g̃2K · · · g̃sK
gg̃1K gg̃2K · · · gg̃sK

)
, (8)

∼
(

1 2 · · · r
t [L]
g̃1

t [L]
g̃2

· · · t [L]
g̃s

)
= p[L]

g , (9)

where the degree of each permutation is equal to s = |G|/|K|. When g runs over
G, the permutation p[L]

g constructs a set of permutations:

G(/K) = {p[L]
g | ∀g ∈ G}, (10)

which is called a (LCR) of G modulo K.

Example 1. This example on the point group D2d for an allene skeleton is
based on Chapters 2 and 5 of Fujita’s book [12].

The eight symmetry operations of D2d are shown in figure 1. They con-
struct the D2d point group as follows:

D2d = { I︸︷︷︸
1

, C2(1)︸︷︷︸
2

, C2(2)︸︷︷︸
3

, C2(3)︸︷︷︸
4

; σd(1)︸︷︷︸
5

, S4︸︷︷︸
6

, S3
4︸︷︷︸

7

, σd(2)︸︷︷︸
8

}, (11)

which is closed with respect to the multiplication of the operations, as shown
in the corresponding multiplication table (figure 2). For the sake of convenience,
the symmetry operations are sequentially numbered in accord with the appear-
ance order of equation (11).
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Figure 1. Symmetry operations of an allene molecule. Proper rotations are depicted in the left dia-
gram, while improper rotations (rotoreflections) are depicted in the right diagram. The left diagram
shows three twofold rotations (C2(1), C2(2), and C2(3)) around symmetry axes, which are perpen-
dicular to one another as designated by vector symbols. The three twofold rotations and an iden-
tity operation (I ) are referred to as proper rotations. The right diagram shows rotoreflections, which
are two mirror reflections (σd(1) and σd(2)) and two fourfold rotoreflections (S4 and S3

4 ). They are
referred to as improper rotations.

Figure 2. Multiplication table of D2d .

Among the subsets of the D2d , there are subsets which are closed by the
same multiplication. They are called subgroups:

D2 = {I, C2(3), C2(1), C2(2)}, (12)

C2v = {I, C2(3); σd(1), σd(2)}, (13)

S4 = {I, C2(3); S4, S3
4}, (14)

C2 = {I, C2(3)}, (15)

C′
2 = {I, C2(1)}, C′′

2 = {I, C2(2)}, (16)

Cs = {I, σd(1)}, C′
s = {I, σd(2)}, (17)

C1 = {I }. (18)
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Among them, C′
2 and C′′

2 are conjugate to each other, because the corre-
sponding two-fold axes are superposable by an operator of D2d . This feature is
designated by the equation: S−1

4 C′
2S4 = C′′

2. Similarly, Cs and C′
s are conjugate

to each other because the corresponding mirror planes are superposable by an
operator of D2d . This feature is designated by the equation: S−1

4 Cs S4 = C′
s .

Among these subgroups, a non-redundant set of subgroups (SSGD2d
) is

selected as follows:

SSGD2d
= {C1, C2, C′

2, Cs, S4, D2, D2d}, (19)

where the alignment is in an ascending order of the orders of the subgroups and
an appropriate representative is adopted if conjugate subgroups are present.

Example 2. This example on the RCR (Cs\)D2d is essentially based on Chapter
2 of Fujita’s book [12], although the present notation is slightly different from
the original one. By starting from equation (11), we obtain the corresponding
right coset decomposition as follows:

D2d = Cs + CsC2(1) + CsC2(3) + CsC2(2) (20)

= {1, 5}︸ ︷︷ ︸
1

+ {2, 6}︸ ︷︷ ︸
2

+ {4, 8}︸ ︷︷ ︸
3

+ {3, 7}︸ ︷︷ ︸
4

, (21)

where the numbering of the symmetry operations contained in each coset is
shown in figure 2. Then, the following set of right cosets is obtained:

Cs\D2d = { Cs︸︷︷︸
1

, CsC2(1)︸ ︷︷ ︸
2

, CsC2(3)︸ ︷︷ ︸
3

, CsC2(2)︸ ︷︷ ︸
4

}, (22)

where these cosets are numbered sequentially from 1 to 4. Note that an arbitrary
mode of numbering can be selected for equation (22) from the 4! ways of num-
bering without losing generality. However, it is convenient to select an adequate
mode of numbering to satisfy the correspondence to the numbering of positions
shown in figure 1. When each coset is multiplied by g (∈ D2d ), the following per-
mutation is obtained:

g
[R]∼

(
Cs CsC2(1) CsC2(3) CsC2(2)

Cs g CsC2(1)g CsC2(3)g CsC2(2)g

)
(23)

∼
(

1 2 3 4
t [R]
g1 t [R]

g2 t [R]
g3 t [R]

g4

)
= p[R]

g . (24)

When g runs over D2d , the resulting permutations generate a RCR as fol-
lows:

(Cs\)D2d = {p[R]
g | ∀g ∈ D2d}, (25)
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which is transitive under D2d . For the sake of convenience, each p[R]
g is expressed

as a product of cycles, e.g.,

C2(1)
[R]∼

(
Cs I CsC2(1) CsC2(3) CsC2(2)

CsC2(1) Cs I CsC2(2) CsC2(3)

)
(26)

∼ p[R]
C2(1)

=
(

1 2 3 4
2 1 4 3

)
= (1 2)(3 4), (27)

where (1 2) and (3 4) represent cycles to show the transformations of the relevant
right cosets. The concrete form of the RCR (Cs\)D2d is calculated as follows:

I ∼
(

1 2 3 4
1 2 3 4

)
= (1)(2)(3)(4), (28)

C2(1) ∼
(

1 2 3 4
2 1 4 3

)
= (1 2)(3 4), (29)

C2(2) ∼
(

1 2 3 4
4 3 2 1

)
= (1 4)(2 3), (30)

C2(3) ∼
(

1 2 3 4
3 4 1 2

)
= (1 3)(2 4), (31)

σd(1) ∼
(

1 2 3 4
1 4 3 2

)
= (1)(3)(2 4), (32)

S4 ∼
(

1 2 3 4
2 3 4 1

)
= (1 2 3 4), (33)

S3
4 ∼

(
1 2 3 4
4 1 2 3

)
= (1 4 3 2), (34)

σd(2) ∼
(

1 2 3 4
3 2 1 4

)
= (1 3)(2)(4), (35)

where an overbar represents the invertion of one chirality into an opposite chi-
rality. These permutations of (Cs\)D2d control the symmetrical behavior of the
four positions of the allene skeleton shown in figure 1. In other words, the RCR
(Cs\)D2d governs the orbit (equivalence class) of the four positions in the allene
skeleton.

Let us consider an operation a satisfying a ∈ Hgi (i = 1, 2, . . . , or r in
equation (1)). Then, we obtain ag−1

i ∈ H. Because H is a group, the inverse of
ag−1

i is also an element of H, i.e., (ag−1
i )−1 ∈ H. This means gi a−1 ∈ H, i.e.,

a−1 ∈ g−1
i H. By running gi over the transversal of representatives of equation

(1), we obtain the corresponding left coset decomposition:

G = g−1
1 H + g−1

2 H + · · · + g−1
r H, (36)
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where we place g−1
1 = I and r = |G|/|H|. Note that the right coset Hgi (equa-

tion (1)) corresponds to the left coset g−1
i H (equation (36)) in one-to-one fash-

ion. Thereby, we derive the following set of lefts cosets from equation (36),

G/H = {g−1
1 H, g−1

2 H, . . . , g−1
r H}. (37)

On the same line as equations (3) and (4), we obtain the following permutation:

g ∼
(

g−1
1 H g−1

2 H · · · g−1
r H

gg−1
1 H gg−1

2 H · · · gg−1
r H

)
(38)

∼
(

1 2 · · · r
t [L]
g1 t [L]

g2 · · · t [L]
gr

)
= p[L]

g , (39)

where the degree of each permutation is equal to r = |G|/|H|. When g runs over
G, the permutation p[L]

g constructs a LCR of G modulo H as follows:

G(/H) = {p[L]
g | ∀g ∈ G}. (40)

The ith components Hgi and Hgi g in equation (3) correspond to the ith
components g−1

i H and (gi g)−1H (= g−1g−1
i H) in equation (38), respectively.

When gi moves from i = 1 to r , the resulting permutations p[R]
g (∈ (H\)G) and

p[L]
g−1 (∈ G(/H)) are essentially equal to each other. It follows that we obtain:

p[R]
g = p[L]

g−1 . (41)

On the same line, the following equation can be derived:

p[R]
g−1 = p[L]

g . (42)

These results are summarized as a theorem:

Theorem 1. The RCR (H\)G (equation (5)) and the LCR G(/H) (equation
(40)) are so equivalent as to satisfy equations (41) and (42).

Example 3. This example shows a LCR D2d(/Cs) by starting from equation
(11). According to equation (36), we obtain the corresponding left coset decom-
position as follows:

D2d = Cs + C−1
2(1)

Cs + C−1
2(3)

Cs + C−1
2(2)

Cs (43)

= {1, 5}︸ ︷︷ ︸
1

+ {2, 7}︸ ︷︷ ︸
2

+ {4, 8}︸ ︷︷ ︸
3

+ {3, 6}︸ ︷︷ ︸
4

, (44)

where the numbering of the symmetry operations contained in each coset is
shown in figure 2. The numbering of the left cosets in equation (44) corresponds
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to that of the right cosets in equation (21). Then, the following set of right cosets
is obtained:

D2d/Cs = { Cs︸︷︷︸
1

, C−1
2(1)

Cs︸ ︷︷ ︸
2

, C−1
2(3)

Cs︸ ︷︷ ︸
3

, C−1
2(2)

Cs︸ ︷︷ ︸
4

}, (45)

where these cosets are numbered sequentially from 1 to 4. The mode of number-
ing should be selected in agreement with equation (45) (i.e., C2(1) ↔ C−1

2(1)
, etc.

and gi ↔ g−1
i in general). The concrete form of the LCR D2d(/Cs) is calculated

as follows:

I ∼
(

1 2 3 4
1 2 3 4

)
= (1)(2)(3)(4), (46)

C2(1) ∼
(

1 2 3 4
2 1 4 3

)
= (1 2)(3 4), (47)

C2(2) ∼
(

1 2 3 4
4 3 2 1

)
= (1 4)(2 3), (48)

C2(3) ∼
(

1 2 3 4
3 4 1 2

)
= (1 3)(2 4), (49)

σd(1) ∼
(

1 2 3 4
1 4 3 2

)
= (1)(3)(2 4), (50)

S4 ∼
(

1 2 3 4
4 1 2 3

)
= (1 4 3 2), (51)

S3
4 ∼

(
1 2 3 4
2 3 4 1

)
= (1 2 3 4), (52)

σd(2) ∼
(

1 2 3 4
3 2 1 4

)
= (1 3)(2)(4), (53)

where an overbar represents the invertion of one chirality into an opposite
chirality. The comparison of examples 2 and 3 exemplifies equations (41) and
(42). ��

2.2. Marks and fixed-point vectors

Coset representations can be characterized by a set of marks, which is
called a Fixed Point Vector (FPV) to emphasize its geometrical or stereochem-
ical meaning, as described in Chapter 5 of Fujita’s book [12]. Thus, a mark of
K on the RCR (H\)G or on the LCR G(/H) is the number of immobile cosets
by the restriction of the RCR or LCR within the subgroup K. When the K runs
over the SSG of the group G, the resulting marks construct a row vector, which
is called a FPV. Because of the correspondence between equations (1) and equa-
tion (36), the FPV due to the RCR is equal to the FPV due to the LCR.
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Example 4. In order to obtain the mark of the subgroup Cs on the RCR
(Cs\)D2d , we select

Cs = {I, σd(1)} ∼ {(1)(2)(3)(4), (1)(2)(3 4)} (54)

from the permutations of the RCR (equations (28)–(35)). The two points (i.e., 1
and 2) are immobile under Cs so that the mark is equal to 2. The other marks
can be obtained similarly. They are aligned in the order of the SSG shown in
equation (19) so as to give an FPV = (4, 0, 0, 2, 0, 0, 0, 0). This procedure is
applied to all of the RCRs, each of which is obtained in accord with a subgroup
listed in the SSG. By collecting the resulting FPVs as rows, we can construct a
mark table (or a table of marks) as shown in table 1, which has been reported
in Appendix A.8 of Fujita’s book [12].

As found easily, the FPVs for respective RCRs (or LCRs) are different from
each other. This means that each RCR (or LCR) is characterized by the corre-
sponding FPV appearing as a row of a mark table. Moreover, any set of FPVs
exhibits additivity to give a summed FPV.

The mark table shown in table 1 can be regarded as a square matrix
MD2d

. Because the MD2d
is a lower-triangular matrix with non-zero diagonal ele-

ments, it has the inverse matrix (M−1
D2d

). This matrix is shown as a tabular form
(table 2), where the sum of each row is shown in the rightmost column for
the sake of convenience. Note that the sums of non-cyclic subgroups vanish to
become equal to zero. Table 2 has been reported in Appendix B.8 of Fujita’s
book [12].

Because of the additivity of FPVs, the multiplicity of each component
FPV involved in a summed FPV can be calculated by the multiplication
of the summed FPV by the inverse mark table. For example, if a summed
FPV = (24, 4, 0, 2, 0, 0, 0, 0) is given, the multiplicity of each component FPV

Table 1
Mark table for D2d [12].

RCR LCR C1 C2 C
′
2 Cs S4 C2v D2 D2d

(C1\)D2d D2d (/C1) 8 0 0 0 0 0 0 0
(C2\)D2d D2d (/C2) 4 4 0 0 0 0 0 0
(C′

2\)D2d D2d (/C
′
2) 4 0 2 0 0 0 0 0

(Cs\)D2d D2d (/Cs ) 4 0 0 2 0 0 0 0
(S4\)D2d D2d (/S4) 2 2 0 0 2 0 0 0
(C2v\)D2d D2d (/C2v) 2 2 0 2 0 2 0 0
(D2\)D2d D2d (/D2) 2 2 2 0 0 0 2 0
(D2d\)D2d D2d (/D2d ) 1 1 1 1 1 1 1 1
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Table 2
Inverse mark table for D2d [12].

RCR (C1\) (C2\) (C
′
2\) (Cs\) (S4\) (C2v\) (D2\) (D2d\)

LCR (/C1) (/C2) (/C
′
2) (/Cs) (/S4) (/C2v) (/D2) (/D2d ) sum

C1
1
8 0 0 0 0 0 0 0 1

8
C2 − 1

8
1
4 0 0 0 0 0 0 1

8
C′

2 − 1
4 0 1

2 0 0 0 0 0 1
4

Cs − 1
4 0 0 1

2 0 0 0 0 1
4

S4 0 − 1
4 0 0 1

2 0 0 0 1
4

C2v
1
4 − 1

4 0 − 1
2 0 1

2 0 0 0
D2

1
4 − 1

4 − 1
2 0 0 0 1

2 0 0
D2d 0 1

2 0 0 − 1
2 − 1

2 − 1
2 1 0

is calculated as follows:

(24, 4, 0, 2, 0, 0, 0, 0)M−1
D2d

= (2, 1, 0, 1, 0, 0, 0, 0, 0) (55)

the right-hand side of which shows the appearance of two (C1\)D2d -rows, one
(C2\)D2d -row, and one (Cs\)D2d -row of table 1.

The mark tables and the inverse mark tables for representative point groups
have been summarized in Appendices A and B of Fujita’s book [12].

2.3. Sphericities of orbits and USCI-CFs

According to Chapter 9 of Fujita’s book [12], the restriction of the RCR
(H\)G within the subgroup K is called the subduction of the RCR and repre-
sented by the symbol (H\)G ↓ K, which is derived from equation (3) as follows:

(H\)G ↓ K = {p[R]
g |∀g ∈ K}. (56)

The resulting representation of the subgroup K is generally represented by
the sum of RCRs of K as follows:

(H\)G ↓ K =
∑

L

αL(L\)K, (57)

where the summation is concerned with all of the subgroups L of K up to con-
jugacy.

Although the treatment described in Chapter 9 of Fujita’s book [12] is con-
cerned with RCRs, it can be applied to LCRs on the same line. Thus, the sub-
duction of the LCR G(/H) ↓ K is derived from equation (40) as follows:

G(/H) ↓ K = {p[L]
g |∀g ∈ K}. (58)
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The resulting representation is regarded as a representation of the subgroup
K, which is generally represented by the sum of LCRs of K as follows:

G(/H) ↓ K =
∑

L

αLK(/L), (59)

where the summation is concerned with all of the subgroups L of K up to con-
jugacy.

The symbol αL of equation (57) or (59) is a non-negative integer represent-
ing the multiplicity of each resulting RCR or LCR of K. Because the subduction
process to K (equation (57) or (59)) is essentially the same as the process which
has been done to calculate the mark of the RCR or the LCR by K, the mark is
equal to the multiplicity of a one-degree RCR (K\)K or LCR K(/K). That is to
say, the multiplicity αK represents the corresponding mark.

To comprehend the subductions represented by equations (57) and (59), we
should add some comments on the actions of (L\)K and K(/L). Because these
actions are equivalent, only the action of (L\)K will be discussed here. As a
result of the subduction (H\)G ↓ K (equation (57)), there emerges a set of cosets

SCK = {Hgi k | ∀k ∈ K} (60)

by starting from the Hgi (tentatively fixed), where the resulting cosets are con-
tained in the the original H\G, i.e., SCK ⊂ H\G. Note that the set SCK may have
some redundancy so as to have two or more equal cosets. Hence, let L be a sub-
set of K, which gives a set of such equal cosets that satisfy Hgi = Hgi� = Hgi�

′
for any two elements � and �′ (∈ L). Because Hgi��

′ = Hgi�
′ = Hgi , the subset

L is a subgroup of K. Thereby, the following set of right cosets is obtained:

L\K = {Lk1, Lk2, . . . , Lk|K|/|L|}, (61)

which is governed by the RCR (L\)K. By using the representatives of L\K, i.e.,
{k1(= I ), k2, . . . , k|K|/|L|}, the redundancy described above is deleted from the SCK

(equation (60)) to give another set of cosets:

SCL\K = {Hgi k1, Hgi k2, . . . , Hgi k|K|/|L|}, (62)

which is a non-redundant subset of the original H\G. Because every cosets of
the set SCL\K (equation (62)) correspond to those of the set L\K (equation (61))
in a one-to-one fashion, we can say that the set SCL\K (equation 62) is governed
by the RCR (L\)K. Because the L depends on the Hgi fixed tentatively, the pro-
cedure of generating SCL\K is repeated by moving Hgi to cover the original set
H\G so as to satisfy equation (57).

The two equations (57) and (59) are essentially equivalent so as to select
common multiplicities (i.e., αL). The calculation of such multiplicities has once
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been discussed in Chapter 9 of Fujita’s book [12]. The subduction results for rep-
resentative point groups have been summarized in Appendix C of the same book
[12].

Each CR (RCR (H\)G or LCR G(/H)) is characterized as being homo-
spheric, enantiospheric, or hemispheric according to the chirality/achirality of
the relevant groups, as listed in table 3 [12, 14]. Thereby, the corresponding sphe-
ricity index is defined as found in table 3, i.e., ad for a homospheric CR, cd for
an enantiospheric CR, or bd for a hemispheric CR. Because each CR governs an
orbit (equivalence class) of objects (atoms, proligands, ligands, etc.), we can say
that the orbit is also characterized by the sphericity and by the sphericity index.

Because each RCR appearing on the right-hand side of equation (57) or
each LCR appearing on the right-hand side of equation (59) is also characterized
by its sphericity index with respect to K (and its subgroup L), the subductions
(equations (57) and (59)) can be characterized by a common product of spheric-
ity indices. According to Chapter 19 of Fujita’s book [12], this product is called
a unit subduced cycle index with chirality fittingness (USCI-CF).

By moving K over the SSG of G, the subductions represented by equations
(57) or (59) construct a set of USCI-CFs, which characterizes the RCR ((H\)G)
or at the same time the LCR (G(/H)). When the H of the RCR or of the LCR
is moved over the SSG of G, we can obtain a USCI-CF table, each row of which
is composed of such a set of USCI-CFs. The USCI-CF tables for representative
point groups have been summarized in Appendix E of Fujita’s book [12].

Example 5. The Cs-restriction described in example 4 corresponds to the sub-
duction of the RCR (Cs\)D2d by the subgroup Cs , i.e., (Cs\)D2d ↓ Cs , The
result shown on the right-hand side of equation (54) indicates that the origi-
nal orbit {1, 2, 3, 4} governed by the RCR (Cs\)D2d is divided into three orbits
(suborbits), i.e., {1} governed by (Cs\)Cs, {2} governed by (Cs\)Cs , and {3, 4}
governed by (C1\)Cs . According to equation (57), the present result is repre-
sented by the following equation:

(Cs\)D2d ↓ Cs = 2(Cs\)Cs + (C1\)Cs . (63)

Table 3
Sphericities and sphericity indices for an RCR (H\)G or an LCR G(/H) [14].

Global Local Sphericity index
symmetry (G) symmetry (H) Sphericity (where d = |G|/|H|)

Achiral Achiral Homospheric ad
Achiral Chiral Enantiospheric cd
Chiral Chiral Hemispheric bd
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The RCRs appearing on the right-hand side of equation (63) are character-
ized by the respective sphericity indices, a1 (twice) and c2, because of the criteria
shown in table 3, so that the subduction shown in equation (63) is characterized
by a USCI-CF as the product of the sphericity indices, i.e., a2

1c2. Obviously, the
mark 2 obtained in example 4 corresponds to the power 2 of the sphericity index
a1, which is assigned to the immobile points {1} and {2} under Cs (cf. equation
(54)).

This procedure is repeated by moving the subgroup K over the SSG of D2d
(equation (19)) so as to give the corresponding set of USCI-CFs:

{b4
1, b2

2, b2
2, a2

1c2, c4, a2
2, b4, a4}. (64)

Obviously, the collection of the powers of one-cycles (a1 and b1) gives the
corresponding FPV, i.e., (4, 0, 0, 2, 0, 0, 0, 0), which appears as the (Cs\)D2d -row
(or D2d(/Cs)-row) in table 1. The formal row vector represented by equation (64)
is used to construct the (Cs\)D2d -row (or the D2d (/Cs)-row) of the USCI-CF table
shown in table 4, which is cited from Appendix E.8 of Fujita’s book [12].

The sums at the bottom of table 4 (
∑s

i=1 m ji ) are adopted from the right-
most column of table 2. They are useful to show the relationship between the
USCI approach and Fujita’s proligand method [35–37], although the details of
the relationship will be discussed elsewhere.

3. Definitions of mandalas

3.1. Regular representations and regular bodies

3.1.1. The numbering of regular bodies
An extreme case of RCRs in which H is an identity group (i.e., H = C1 =

{I }) is called a right regular representation (RRR), which is represented by the

Table 4
USCI-CF table for D2d [12].

↓C1 ↓C2 ↓C
′
2 ↓Cs ↓S4 ↓C2v ↓D2 ↓D2d

(C1\)D2d D2d (/C1) b8
1 b4

2 b4
2 c4

2 c2
4 c2

4 b2
4 c8

(C2\)D2d D2d (/C2) b4
1 b4

1 b2
2 c2

2 c2
2 c2

2 b2
2 c4

(C′
2\)D2d D2d (/C

′
2) b4

1 b2
2 b2

1b2 c2
2 c4 c4 b2

2 c4
(Cs\)D2d D2d (/Cs ) b4

1 b2
2 b2

2 a2
1c2 c4 a2

2 b4 a4
(S4\)D2d D2d (/S4) b2

1 b2
1 b2 c2 a2

1 c2 b2 a2
(C2v\)D2d D2d (/C2v) b2

1 b2
1 b2 a2

1 c2 a2
1 b2 a2

(D2\)D2d D2d (/D2) b2
1 b2

1 b2
1 c2 c2 c2 b2

1 c2
(D2d\)D2d D2d (/D2d ) b1 b1 b1 a1 a1 a1 b1 a1∑s

i=1 m ji 1/8 1/8 1/4 1/4 1/4 0 0 0
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symbol (C1\)G. The RRR governs the following set obtained by replacing H by
C1 in equation (2), i.e.,

C1\G = { g1︸︷︷︸
1

, g2︸︷︷︸
2

, . . . , gn︸︷︷︸
n

}, (65)

where we place g1 = I and n = |G|. The set C1\G is an ordered set that is iden-
tical with the group G itself. Although there are n! permutations for numbering
the set, an arbitrary one can be selected as a reference numbering without losing
generality.

Example 6. The concrete form of the RRR (C1\)D2d is obtained by selecting
each column of the multiplication table (figure 2), i.e.,

I ∼
(

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= (1)(2)(3)(4)(5)(6)(7)(8), (66)

C2(1) ∼
(

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)
= (1 2)(3 4)(5 6)(7 8), (67)

C2(2) ∼
(

1 2 3 4 5 6 7 8
3 4 1 2 7 8 5 6

)
= (1 3)(2 4)(5 7)(6 8), (68)

C2(3) ∼
(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)
= (1 4)(2 3)(5 8)(6 7), (69)

σd(1) ∼
(

1 2 3 4 5 6 7 8
5 7 6 8 1 3 2 4

)
= (1 5)(2 7)(3 6)(4 8), (70)

S4 ∼
(

1 2 3 4 5 6 7 8
6 8 5 7 2 4 1 3

)
= (1 6 4 7)(2 8 3 5), (71)

S3
4 ∼

(
1 2 3 4 5 6 7 8
7 5 8 6 3 1 4 2

)
= (1 7 4 6)(2 5 3 8), (72)

σd(2) ∼
(

1 2 3 4 5 6 7 8
8 6 7 5 4 2 3 1

)
= (1 8)(2 6)(3 7)(4 5), (73)

where an overbar represents the invertion of one chirality into an opposite chi-
rality.

According to Chapter 7 of Fujita’s book [12], a regular body of G-symme-
try is defined as a three-dimensional objects having |G| equivalent positions that
are governed by an RRR (C1\)G. The numbering of the positions is selected in
accord with the numbering of elements shown in equation (65). Thus, the ele-
ment gi (i = 1, 2, . . . , n) acts on the ith position of the regular body so as to
shift it into the first position selected arbitrarily as a reference (g1 = I ). This
numbering, which is called a reference numbering, assures the one-to-one corre-
spondence between each element of G (equation (65)) and each position of the
resulting regular body.
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It should be noted here that a regular body can be interpreted in two ways.
One way is to distinguish the |G| equivalent positions in accord with distinct
modes of numbering so that the set of |G| equivalent positions governed by the
RRR (C1\)G. The other way is to transform the regular body into |G| regu-
lar bodies, where the set of the resulting equivalent regular bodies is regarded
as constructing a one-membered orbit governed by LCR G(/G).

Example 7. A regular body (1′) for D2d is shown in figure 3, where two cyclo-
propane rings attach to the terminal carbons of an allene skeleton in a perpen-
dicular fashion so as to maintain the D2d -symmetry (cf. figure 1). For the sake
of convenience, the topview (1) is used in the following discussions. Although
this regular body has once been discussed in Chapter 7 of Fujita’s book [12], the
mode of numbering is changed to meet the numbering adopted in equation (65)
and figure 2. Thereby, the RRR shown in equations (66)–(73) controls the sym-
metry of the resulting regular body (1).

Although the numbering of the vertices can be selected arbitrarily, it should
be consistent with the numbering of the symmetry operations shown in the mul-
tiplication table (figure 2). In other words, once we select the numbering shown
in figure 2, the numbering of the vertices is decided, as indicated in the caption
of figure 3.

In accord with the RRR defined above (equation (65)), a left regular repre-
sentation (LRR), G(/C1), is obtained so as to govern the following set obtained
by replacing H by C1 in equation (37), i.e.,

G/C1 = {g−1
1︸︷︷︸
t1

, g−1
2︸︷︷︸
t2

, . . . , g−1
n︸︷︷︸
tn

}, (74)

Figure 3. Regular body for D2d . The position 1 operated by I [1] is permuted into the position 1;
the position 2 operated by C2(1) [2] into the position 1; the position 3 operated by C2(2) [3] into the
position 1; the position 4 operated by C2(3) [4] into the position 1; the position 5 operated by σd(1)

[5] into the position 1; the position 6 operated by S4 [6] into the position 1; the position 7 operated
by S3

4 [7] into the position 1; and the position 4 operated by σd(2) [8] into the position 1. The num-
ber in each pair of parentheses represents the correspondence to the multiplication table shown in

figure 2.
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where we place g−1
1 = I, t1 = 1, and n = |G|. The set G/C1 is an ordered set,

which is determined in accord with the LRR shown in equation (74). Note that
the RRR shown in equation (65) and the LRR shown in equation (74) are cor-
related to each other by the numbering of their elements.

On the same line as the reference numbering of the regular body, another
mode of numbering of the regular body of G-symmetry can be adopted on the
basis of the LRR G(/C1) shown in equation (74). This numbering is called the
inverse of the reference numbering. The discrimination between the reference
numbering and its inverse is an essential point to discuss the symmetrical prop-
erties of regular bodies and mandalas described below.

Example 8. A regular body with the inverse numbering (̃1) for D2d is shown in
figure 4, where the mode of numbering is changed to meet the one adopted in
equation (74).

Figure 4. Regular body with a reference numbering (1) and with the inverse numbering (̃1).

Note that the inverse numbering is selected to transform the RRR (C1\)D2d
(equal to equation (11)) into the LRR D2d/C1 as follows:

D2d/C1 = { I −1︸︷︷︸
1

, C−1
2(1)︸︷︷︸
2

, C−1
2(2)︸︷︷︸
3

, C−1
2(3)︸︷︷︸
4

; σ−1
d(1)︸︷︷︸
5

, S−1
4︸︷︷︸
6

, S−3
4︸︷︷︸
7

, σ−1
d(2)︸︷︷︸
8

}

= { I︸︷︷︸
1

, C2(1)︸︷︷︸
2

, C2(2)︸︷︷︸
3

, C2(3)︸︷︷︸
4

; σd(1)︸︷︷︸
5

, S3
4︸︷︷︸

6

, S4︸︷︷︸
7

, σd(2)︸︷︷︸
8

}. (75)

The exchange between S4 and S3
4 for equations (11) and (75) corresponds

to the exchange between positions 6 and 7 for the reference numbering (1) and
the inverse numbering (̃1).

3.1.2. Segmentation of regular bodies
The RCR shown in equation (5) causes the partition of the positions con-

tained in the corresponding regular body with the reference numbering. The
resulting |G|/|H| sets of positions are called H-segments, which construct an
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orbit governed by the RCR (equation (5)). Because each right coset Hgi gov-
erned by the RCR satisfies the relationship Hgi (g

−1
i Hgi ) = Hgi , it is fixed on

the action of g−1
i Hgi , which is conjugate to H. This means that each H-seg-

ment belongs to either one of the conjugate subgroups g−1
i Hgi (i = 1, 2, . . . , r ).

In other words, the conjugate subgroups g−1
i Hgi are equalize to H under G

so that the H is regarded as the local symmetry of the segments and the G is
regarded as the global symmetry of the regular body. The resulting mode of par-
tition (segmentation) is called a segmentation pattern. It should be noted that the
H-segmentation maintains the G-symmetry of the original regular body and that
the regular body itself can be regarded as C1-segmentation, which is an extreme
case of the H-segmentation.

Example 9. In terms of equation (21), the eight positions contained in the reg-
ular body (1) are partitioned into four sets, as encircled by ovals (2 in figure 5).
The resulting set of segments A = {A1, A2, A3, A4} corresponds to the set of
right cosets (equation (22)) so that the set A is governed by the RCR shown in
equations (28)–(35).

As for C′
s , another segmentation pattern (3) is obtained by considering the

following right coset decomposition:

D2d = C′
s + C′

sC2(1) + C′
sC2(3) + C′

sC2(2) (76)

= {1, 8}︸ ︷︷ ︸
4

+ {2, 7}︸ ︷︷ ︸
3

+ {4, 5}︸ ︷︷ ︸
2

+ {3, 6}︸ ︷︷ ︸
1

, (77)

where the numbering of the symmetry operations contained in each coset is
shown in figure (2). The set of segments is represented as A′ = {A′

4, A′
3, A′

2, A′
1}

(figure 5) in accord with the numbering shown in equation (77). Thereby, the set
A′ is governed by the RCR shown in equations (28)–(35). It should be noted that
the segmentation patterns shown in figure 5 maintain the D2d -symmetry of the
regular body.

Figure 5. Segmentation patterns to generate orbits of Cs -segments in the regular body (1) for illus-
trating the RCR (Cs\)D2d . Each segment encircled by an oval is called a Cs -segment because it is

fixed (stabilized) on the action of Cs (or its conjugate subgroup C′
s ).
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The segmentation process described here has been discussed in terms of
blocks and local symmetries in Chapter 7 of Fujita’s book [12]. The term
“blocks” is replaced here by a more chemical term segments.

Example 10. Chemically speaking, the set of segments A = {A1, A2, A3, A4} in
2 should be replaced by the set of substitution positions so as to give a reduced
regular body (4), which has a more concrete chemical meaning as shown in fig-
ure 6. The reduced regular body (4) as a secondary skeleton is further substituted
by atoms or ligands (or proligands in general). For example, the positions of 4
are replaced by hydrogen atoms to give an allene molecule. It should be empha-
sized that the set of segments A = {A1, A2, A3, A4} in 2, the set of positions
{1, 2, 3, 4} in 4, and the set of hydrogens {H1, H2, H3, H4} in 5 are all governed
by the same RCR (Cs\)D2d , the concrete form of which is shown in equations
(28)–(35).

Reversely speaking, the symmetrical properties of allene (5) can be dis-
cussed by using the segmented regular body (2) through the reduced regular
body (4). ��

3.1.3. Subduction of regular representations
The subduction of the RRR is a special case of the subduction of RCRs

(equation (56)) as follows:

(C1\)G ↓ K = {p[R]
g | ∀g ∈ K}. (78)

This subduction disturbs the transitivity of the original RRR so as to gen-
erate |G|/|K| orbits, each of which is governed distinctly by an RRR of K. This
process is expressed as follows:

(C1\)G ↓ K = |G|
|K| (C1\)K (79)

according to equation (7.3) described in Chapter 7 of Fujita’s book [12]. The
result shown in equation (79) causes the desymmetrization of the corresponding

Figure 6. Derivation from a segmented regular body (2) to give a reduced regular body (4) and a
molecule (5).
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regular body so that its positions are partitioned into |G|/|K| sets of equivalent
positions under K, where each of the sets (i.e., orbits) is governed by (C1\)K.
The resulting mode of partition is called a subduction pattern. Obviously, equa-
tion (79) is an extreme case of equation (57), in which there emerge |G|/|K| of
regular representations of one kind.

Let us consider the relationship between the subduction (C1\)G ↓ H and
the left coset decomposition G/H (equation (37)). When the reference numbering
(equation (65)) is taken into consideration, the process of selecting (C1\)G ↓ H
is regarded as the construction of C1gi g (g∈H), i.e., the selection of left cosets
gi H. Although each gi H is a left coset, their numbering is in accord with the
reference numbering (equation (65)). This situation is illustrated by the follow-
ing example.

Example 11. We select Cs (equation (17)) as K according to equation (78).
From the eight permutation contained in the RRR (C1\)D2d (equations (66)–
(73)), the subduction (C1\)D2d ↓ Cs is accomplished by selecting equation (66)
(∼ I ) and equation (70) (∼ σd(1)). As a result, the transitive set of eight posi-
tions in the regular body are partitioned into four sets, i.e., {1, 5}, {2, 7}, {3, 6},
and {4, 8} as shown in 6 (figure 7). This result is expressed as follows by apply-
ing equation (79) to this case:

(C1\)D2d ↓ Cs = 4(C1\)Cs . (80)

Hence, each of the four sets, i.e., {1, 5}, {2, 7}, {3, 6}, or {4, 8}, is governed by
the RCR (C1\)Cs . Because these sets appear in equation (44), the subduction
(C1\)D2d ↓ Cs is related to the left coset decomposition shown in equation (43).

It should be noted the subduction pattern (6) shown in figure 7 restricts
the symmetry of the regular body within Cs . The subduction pattern shown in
6 has a more concrete chemical meaning. For example, one of the Cs-segments
in 6, e.g., {1, 5}, is replaced by solid circles so as to give a transformula 7, which
models the Cs-symmetry of a (pro)molecule. Thus the resulting transformula (7)

Figure 7. Subduction pattern generated by the subduction of RRR (C1\)D2d into Cs . Each set
encircled by an oval is regarded as a regular body of Cs -symmetry after it is fixed (stabilized) on

the action of Cs .
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belongs to the Cs-symmetry so that each of the four sets, i.e., {1, 5}, {2, 7}, {3, 6},
or {4, 8}, is governed by the RCR (C1\)Cs . Although oval symbols are omitted
in 7, it is easy to recognize that the eight positions of the 7 are partitioned into
the four sets, i.e., {1, 5}, {2, 7}, {3, 6}, and {4, 8}. For the sake of convenience, the
term transformulas is used to designate regular bodies modified by any transfor-
mation processes such as subduction, segmentation, etc. ��

Let us consider one of the Cs-segments, e.g., {1, 5} in 2 or {3, 6} in 3, which
is regarded as exhibiting the local symmetry Cs in example 9. The same segment
{1, 5} or {3, 6} is fixed under the subduction to Cs , as shown in 6 of example 11.
The comparison between examples 9 and 11 provides us with a new viewpoint of
stereochemistry and stereoisomerism. This point will be discussed after the intro-
duction of a new concept mandala.

4. Mandalas as nested regular bodies

4.1. Definition

To go on further discussions, we shall compare example 9 with example
11 in detail. This comparison reveals the relationship between the subduction
(C1\)G ↓ H and the left coset decomposition G/H (equation (37)) so as to intro-
duce the concept of mandala.

Example 12. As found in example 9, the segmentation patterns shown in fig-
ure 5 maintain the D2d -symmetry of the regular body (1). This feature is more
clearly demonstrated by the action of the operations of D2d on the segmented
regular body (2), as shown in figure 8. This figure can be interpreted that the
operations of D2d act on the regular body (1) to produce a set of functions,
G∗

1={ f1, f2, f3, f4, f5, f6, f7, f8}, on which the segmentation pattern (5) is super-
posed.

Because the eight transformulas (segmented regular bodies: f1– f8) are iden-
tical if the numbering is omitted, they are surrounded in the box shown in fig-
ure 8. This means that the set G∗

1={ f1, f2, f3, f4, f5, f6, f7, f8} is transformed
into itself under the action of D2d so as to generate a one-membered orbit
G∗={G∗

1} governed by the LCR D2d(/D2d). As a result, the set of segments
{A1, A2, A3, A4} is governed by the RCR (Cs\)D2d . The global symmetry D2d
of the RCR (Cs\)D2d corresponds to the local symmetry D2d of the LCR
D2d(/D2d). ��

Example 13. As found in example 11, the subduction pattern (6) shown in fig-
ure 7 does not maintain the D2d -symmetry of the regular body (1), where the
subduction pattern (6) is fixed under Cs = {I, σd(1)}. This feature is more clearly
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Figure 8. Eight segmented regular bodies ( f1– f8) derived from the Cs -segmentation pattern (2)
under D2d . They represent the maintenance of the D2d -symmetry for the regular body so that the
set of the eight segmented regular bodies ( f1– f8) constructs a one-membered orbit governed by the

LCR D2d (/D2d ).

demonstrated by the action of the operations of D2d on the subduction pattern
(6), as shown in figure 9. It should be noted that 19 (S3

4 , f7) and 20 (S4, f6) are
placed to pair with 15 (C2(1), f2) and 16 (C2(2), f3), respectively, in order to be
fixed under Cs (or its conjugate subgroup C′

s). Thus the resulting eight trans-
formulas (subduced regular bodies, f1– f8) are divided into four sets, i.e., A∗

1 =
{ f1, f5}, A∗

2 = { f2, f7}, A∗
4 = { f3, f6}, and A∗

3 = { f4, f8}, which are called
assemblies as defined below. As a result, the assemblies of subduced regular bod-
ies construct an orbit, i.e. A∗ = {A∗

1, A∗
2, A∗

4, A∗
3}, which is governed by LCR

D2d(/Cs). Accordingly, each set of divided positions in each subduced regular
body, i.e., {1, 5}, {3, 6}, {2, 7}, or {4, 8}, is governed by the RCR (C1\)Cs . The
global symmetry Cs of the RCR (C1\)Cs corresponds to the local symmetry Cs
of the LCR D2d(/Cs). ��

To integrate figure 8 (the RCR (Cs\)D2d vs. the LCR D2d(/D2d)) and fig-
ure 9 (the RCR (C1\)Cs versus the LCR D2d(/Cs)), an extreme case (the RCR
(C1\)D2d versus the LCR D2d(/D2d)) should be examined. Hence, a mandala is
defined as a nested regular body constructed as follows:
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Figure 9. Eight subduced regular bodies derived from the Cs -subduction pattern (6) under D2d .
They represent the reduction of the D2d -symmetry for the regular body into the Cs -symmetry for
each subduced regular body. As a result, the assemblies of subduced regular bodies, A∗

1 = { f1, f5},
A∗

2 = { f2, f7}, A∗
4 = { f3, f6}, and A∗

3 = { f4, f8}, construct an orbit governed by LCR D2d (/Cs).
Accordingly, each set of divided positions in each subduced regular body, i.e., {1, 5}, {3, 6}, {2, 7},

or {4, 8}, is governed by the RCR (C1\)Cs .

Definition 1. Suppose that a regular body is given, where the positions of the
regular body are governed by an RRR (C1\)G (cf. 65). Then, |G| of the per-
muted regular bodies f1– f|G|, which are generated from the regular body by the
permutations due to the group G, are placed on the vertices of a hypothetical
regular body in accord with the LRR G(/C1) (cf. 74) corresponding to the RRR.
The resulting diagram is called a mandala of the group G. The resulting man-
dala should be regarded as consisting of a one-membered orbit, where the regu-
lar bodies construct a one-membered orbit governed by the LCR G(/G).

It should be noted that the numbering of the original regular body obeys
the reference numbering exemplified for D2d in example 7 and that the number-
ing of the mandala obeys the inverse numbering exemplified in example 8.

Example 14. The transformulas (i.e., permuted regular bodies, f1– f8) generated
on the action of D2d are placed on the vertices of a hypothetical regular body, as
shown in figure 10. The alignment of the transformulas are in agreement with the
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Figure 10. Mandala (a nested regular body) containing eight transformulas ( f1– f8) at its vertices.
The alignment shown in this diagram corresponds to the right diagram shown in figure 4. On the
other hand, the alignment of eight positions in each regular body corresponds to the left diagram

shown in figure 4. The full expression of the mandala is simplified into 29.

right diagram (̃1) shown in figure 4, while the alignment of the positions of the
inner regular body adopts that of the left diagram (1). For the sake of convenience,
the full expression of the mandala (figure 10) is simplified into 29.

Suppose that the reference regular body (1) is regarded as a C1-segmented
one. Then, the eight positions of the regular body (1) are considered to construct
an eight-membered orbit governed by (C1\)D2d . The eight-membered orbit is
characterized by the FPV = (8, 0, 0, 0, 0, 0, 0, 0), which appears at the (C1\)D2d -
row of table 1. On the other hand, the set of the eight transformulas shown in
the mandala (29) is regarded as constructing a one-membered orbit G = {G1},
where we place G1 = { f1, f2, f3, f4, f5, f6, f7, f8}. Then, the one-membered orbit
G is governed by the LCR D2d(/D2d). The mandala (29) composed of the one-
membered orbit (G) represents a molecule of D2d -symmetry. The one-membered
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orbit (G) is characterized by the FPV = (1, 1, 1, 1, 1, 1, 1, 1), which appears at the
D2d(/D2d)-row of table 1. ��

4.2. Effect of segmentation on mandalas

4.2.1. Mandala composed of segmented regular bodies
Such a process of segmentation as described in example 12 is illustrated by

using a mandala, as shown in figure 11.

Example 15. The process shown in example 12 is illustrated by superposing the
segmentation pattern (2) on each of the regular bodies of the mandala shown in
figure 10. The resulting diagram (figure 11) is a mandala-type illustration of fig-
ure 8. As described in example 12, this process generating a segmented regular

Figure 11. Mandala composed of Cs -segmented regular bodies. The orbit of segments, A =
{A1, A2, A3, A4}, is characterized by an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0) so that it is governed by

the RCR (Cs\)D2d . The full expression of the mandala is simplified into 30.
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body (2) maintains the D2d -symmetry of the regular body (1). In other words,
the transformulas of the set G∗

1 = { f1, f2, f3, f4, f5, f6, f7, f8} are identical if the
numbering is not taken into consideration. Hence, the one-membered set G∗ =
{G∗

1} is an orbit (equivalence class) governed by LCR D2d(/D2d), which is char-
acterized by the FPV = (1, 1, 1, 1, 1, 1, 1, 1) appearing at the D2d(/D2d)-row of
table 1.

The feature of the mandala is illustrated by the simplified mandala (30),
where the transformulas are encircled into a bundle. The mandala (30) composed
of the one-membered orbit (G∗) represents a molecule of D2d -symmetry.

On the other hand, the set of segments {A1, A2, A3, A4} in each Cs-seg-
mented regular body is regarded as a four-membered orbit governed by the RCR
(Cs\)D2d . The orbit is characterized by an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0), which
appears at the (Cs\)D2d -row of table 1.

The global symmetry D2d of the RCR (Cs\)D2d for each regular body (e.g.,
2) corresponds to the local symmetry D2d of the LCR D2d(/D2d) for the man-
dala (30). ��

Obviously, the segmentation described in example 15 holds true in general
cases. This is summarized as the following theorem.

Theorem 2. An H-segmentation in each regular body contained in a mandala
of G-symmetry maintains the G-symmetry of the mandala, even if the H is any
subgroup of the G.

The H-segmentation described in theorem 2 divides the |G| positions of
each regular body into |G|/|H| segments, which are equivalent under
G-symmetry. The resulting regular body with the |G|/|H| segments is called an
H-segmented regular body, as described above. Such a segmented regular body
corresponds to a molecule of G-symmetry, as exemplified for the D2d -symmetry
in figure 6. The following theorem is derived by the preceding discussions:

Theorem 3. The set of the |G|/|H| segments in an H-segmented regular body is
governed by the RCR (H\)G.

The mandala generated from the H-segmented regular body (theorem 3)
consists of a one-membered G(/G)-orbit, the member of which is the set of per-
muted H-segmented regular bodies (e.g., G∗ = {G∗

1} of 30). The global symmetry
of the RCR (H\)G of theorem 3 corresponds to the local symmetry of the LCR
G(/G).

4.2.2. Reduced mandalas
The H-segments described in theorems 2 and 3 can be conceptually

replaced by substitution positions (or further by proligands or atoms) to give
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a reduced regular body as a secondary skeleton without the restriction of the
global symmetry G. This type of transformation has been discussed by using fig-
ure 6 for Cs-segments of a D2d -regular body. Thereby, the G-mandala with H-
segmentation is converted into a modified one called a reduced mandala, the
vertices of which accommodate reduced regular bodies such as 4. The follow-
ing example illustrates the conversion of Cs-segments of a D2d -regular body into
substitution positions so as to give a reduced mandala with reduced regular bod-
ies as secondary skeletons.

Example 16. According to figure 6, the segmented regular body 2, etc., in the
mandala (figure 11) are replaced by the reduced regular body 4, etc. Thereby, the
corresponding reduced mandala is generated, as shown in figure 12.

Figure 12. Reduced mandala containing eight transformulas ( f1– f8) at its vertices. The substi-
tution positions ({1, 2, 3, 4}) in each secondary skeleton constructs a four-membered orbit gov-
erned by the RCR (Cs\)D2d , which is characterized by an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0). The full

expression of the mandala is simplified into 38.



508 S. Fujita / Concepts of mandalas as diagrammatical expressions

The transformulas ( f1 to f8) generated from the reduced regular body (4)
as a secondary skeleton are identical if the numbering is ignored so that they
are encircled to give the set represented by G∗

1 = { f1, f2, f3, f4, f5, f6, f7, f8} as
shown in 38. Thereby, the one-membered set (G∗ = {G∗

1}) is an orbit (equivalence
class) governed by the LCR D2d(/D2d). The LCR D2d(/D2d) is characterized by
the FPV = (1, 1, 1, 1, 1, 1, 1, 1) appearing at the D2d(/D2d)-row of table 1. As a
result, the reduced mandala (38) composed of the one-membered orbit (G∗) rep-
resents a molecule of D2d -symmetry, which is generated from the reduced regular
body (4) as a secondary skeleton.

On the other hand, the set of four positions in each reduced regular
body (e.g., 4 or f1) of the reduced mandala is regarded as a four-membered
orbit governed by the RCR (Cs\)D2d . The orbit is characterized by an FPV =
(4, 0, 0, 0, 2, 0, 0, 0, 0), which appears at the (Cs\)D2d -row of table 1.

The global symmetry D2d of the RCR (Cs\)D2d corresponds to the local
symmetry D2d of the LCR D2d(/D2d). ��

4.3. Effect of subduction on mandalas

4.3.1. Assemblage of mandalas
The diagrammatical parallelism between a regular body (e.g., 1) and the

corresponding mandala (e.g., 29) allows us to develop a theoretical framework
similar to the one described for a regular body. Thus, the concept of segmenta-
tion is extended to the concept of assemblage, by which |G| regular bodies placed
on the vertices of a mandala of G are partitioned into |G|/|K| sets if the regular
bodies modified are collected in agreement with a LCR (G(/K)). Such a set of
equivalent transformulas is called an assembly.

Example 17. The feature described in figure 9 (example 13) can be illustrated
by starting from the D2d -mandala depicted in figure 10. By superposing the
subduction pattern (6) on each regular body contained in figure 10, we obtain
figure 13, which shows the Cs-assemblage of the D2d -mandala. Obviously, this
figure has the same meaning as figure 9. The resulting assemblies, i.e., A∗

1 =
{ f1, f5}, A∗

2 = { f2, f7}, A∗
3 = { f4, f8}, and A∗

4 = { f3, f6}, are shown in the
simplified mandala (47). These assemblies construct a four-membered orbit of
assemblies, i.e., A = {A∗

1, A∗
2, A∗

3, A∗
4}, which is governed by the LCR D2d(/Cs),

as discussed later in detail.
The procedure of constructing figure 13 can be interpreted inversely. We

first consider the Cs-assemblage, where one of the Cs-assemblies (e.g., A∗
1 =

{ f1, f5}) is selected. This selection is inevitably accompanied by the Cs-sub-
duction. Thus, the Cs-assembly { f1, f5} (={6, 18}) means the restriction of the
D2d -regular body into Cs . The restriction results in the subduction (C1\)D2d ↓
Cs with respect to the eight positions of the regular body, as shown in equation
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Figure 13. Mandala (a nested regular body) after Cs -assemblage. The eight transformulas ( f1– f8)
at its vertices are assembled into four assemblies, i.e., A∗

1 = { f1, f5}, A∗
2 = { f2, f7},A∗

3 = { f4, f8},
and A∗

4 = { f3, f6}. The alignment shown in this diagram, in which solid circles are added to show
the Cs -symmetry explicitly, corresponds to the right diagram shown in figure 9. The full expression

of the mandala is simplified into 47.

(80) of example 11. Thereby, the eight positions are partitioned, as shown in 6
(figure 9) or in each of the regular bodies appearing in figure 13. This partition
produces a diagram of a more chemical meaning, e.g., 7, as shown in figure 7.
Note that the global symmetry Cs of the four RRRs (C1\)Cs corresponds to the
local symmetry of the LCR D2d(/Cs) of the assembled mandala (47). ��

The discussions in example 17 can be easily generalized so as to give the
following theorem:
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Theorem 4. A K-assembly in a mandala of G-symmetry contains |K| regular
bodies of K-symmetry. The |G| positions of each regular body suffers from
K-subduction so as to cause the subduction (C1\)G ↓ K.

The K-assemblage described in theorem 4 generates |G|/|K| assemblies
equivalent under G-symmetry. The resulting mandala with the |G|/|K| assemblies
is called a K-assembled mandala. The following theorem is derived by the preced-
ing discussions:

Theorem 5. The set of |G|/|K| assemblies in a K-assembled mandala is gov-
erned by the LCR G(/K).

It is to be noted that the mode of assemblage in the mandala 47, i.e.,
{ f1, f5}, { f2, f7}, { f4, f8}, and { f3, f6}, corresponds to the mode of subduction in
the regular body 39, i.e., {1, 5}, {2, 7}, {4, 8}, and {3, 6}. This correspondence is
assured by selecting the reference numbering for the regular body and the inverse
numbering for the mandala (cf. figure 4).

4.3.2. Nested mandalas
In order to assure the equivalence of the |G|/|K| assemblies under G (the-

orem 5), the K-assembled mandala (e.g., 47) should be permuted by the opera-
tions of G. This means the consideration of a nested mandala defined as follows:

Definition 2. Suppose that a mandala f ∗
1 is given, where the |G|-membered

set of regular bodies in the mandala is governed by the LRR G(/C1) (cf. equa-
tion (74)). Then, permuted mandalas f ∗

1 – f ∗
|G|, which are generated from the man-

dala ( f ∗
1 ) by the permutations due to the group G, are placed on the vertices of

a hypothetical regular body in accord with the RRR (C1\)G (cf. equation (65))
corresponding to the LRR. The resulting diagram is called a nested mandala of
the group G.

Each mandala contained in such a nested mandala may be assembled to
give a |G|/|K|-membered set of assemblies. Whether such assemblage is involved
or not, |G| of the mandalas construct a one-membered orbit governed by the
RRR (G\)G. Thereby, the |G|/|K|-membered set of the assemblies is governed
by the LCR G(/K). Theorem 2 for characterizing a mandala is rewritten for the
present case of a nested mandala as follows:

Theorem 6. A K-assemblage of each mandala contained in a nested mandala of
G-symmetry maintains the G-symmetry of the nested mandala, where the K is
any subgroup of the G.
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According to theorem 6, the K-assemblage represents a molecule of K-sym-
metry. The following example illustrates a nested mandala for the D2d -symmetry.

Example 18. The assembled mandala (47) is adopted a reference mandala ( f ∗
1 ).

They are permuted by means of D2d so as to generate a nested mandala shown
in figure 14. Each of the generated mandalas ( f ∗

1 – f ∗
8 ), where an overbar is

used to designate the alternation of chirality in each of the regular bodies
( f1– f8). The set of mandalas in the nested mandala (figure 14), i.e., G†

1 =
{ f ∗

1 , f ∗
2 , f ∗

3 , f ∗
4 , f ∗

5 , f ∗
6 , f ∗

7 , f ∗
8 }, is superposed onto itself under D2d . In other

words, the corresponding one-membered set G† = {G†
1} is an equivalence class

(orbit) governed by the RCR (D2d\)D2d , as shown in the corresponding simpli-
fied nested mandala (55).

Figure 14. Nested mandala. This figure is characterized by an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0) with
respect to the orbit of assemblies, A∗ = {A∗

1, A∗
2, A∗

3, A∗
4}, which is governed by the LCR

D2d (/Cs). The full expression of the mandala is simplified into 55.
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According to theorem 6, the Cs-assemblage of each mandala in the nested
mandala shown in figure 14 maintains the D2d -symmetry of the nested mandala.
As a result, the four sets of assemblies in each mandala, i.e., A∗

1 = { f1, f5}, A∗
2 =

{ f2, f7}, A∗
3 = { f4, f8}, and A∗

4 = { f3, f6}, construct a four-membered equiva-
lence class (orbit) governed by the LCR D2d(/Cs). The global symmetry of the
LCR D2d(/Cs) for the mandalas (e.g., 47, f ∗

1 ) corresponds to the local symmetry
of the RCR (D2d\)D2d for the nested mandala (55). ��

4.4. Characterization of symmetry equivalency

4.4.1. Parallelism between mandalas and nested mandalas
The comparison between definition 1 for a mandala (i.e., a nested regular

body) and definition 2 for a nested mandala shows a mathematical parallelism
between the two relationships, i.e., (1) the relationship between a regular body
and a mandala (a nested regular body) and (2) the relationship between a man-
dala and a nested mandala.

The relationship between a regular body and a mandala (a nested regu-
lar body) is shown in figure 15, where the maintenance of the D2d -symmetry is
found in various types of mandalas, e.g., the mandala (29) derived from the reg-
ular body (1), the mandala (30) derived from the segmented regular body (2),
and the mandala (38) derived from the reduced regular body (4). It should be
emphasized that the diagrams for these types of mandalas are identical with each
other in the level of simplified expressions, as shown in figure 15. If the types of
mandalas should be specified, a mandala with segmented regular bodies (e.g., 30)
is called a segmented mandala and a mandala with reduced regular bodies (e.g.,
38) is called a reduced mandala.

The maintenance of the D2d -symmetry means the common global symme-
try D2d for the eight-membered (C1\)D2d -orbit of C1-segments in the regular
body (1), the four-membered (Cs\)D2d -orbit of Cs-segments in the segmented
regular body (2), and the four-membered (Cs\)D2d -orbit of Cs-positions (or
proligands) in the reduced regular body (4). As a result, such tables as shown in
tables 1, 2, and 4 are effective commonly to these cases. It should be noted that
a one-membered (D2d\)D2d -orbit of a D2d -segment is possible as an alternative
extreme case.

On the other hand, the relationship between a mandala and a nested man-
dala is shown in figure 16, where the mandalas with no assemblies (29, 30, and
38) are first taken into consideration and the assembled mandala (47) are next
considered. Both of them are linked to the nested mandala (55), which shows
the maintenance of the D2d -symmetry of the nested mandala.

The maintenance of the D2d -symmetry means the common global symme-
try D2d for the one-membered D2d(/D2d)-orbit (G) of the D2d -assembly (G∗

1) in
each of the non-assembled mandalas (29, 30, and 38) and the four-membered
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Figure 15. Mandala related to a regular body, a segmented regular body, and a reduced regular
body. When the types of mandalas should be specified, a mandala with segmented regular bod-
ies (e.g., 30) is called a segmented mandala and a mandala with reduced regular bodies (e.g., 38)

is called a reduced mandala.

D2d(/Cs)-orbit (A = {A∗
1, A∗

2, A∗
3, A∗

4}) of Cs-assemblies in the assembled man-
dala (47). Anyone of the assemblies (e.g., A∗

1) represents a molecule of Cs-sym-
metry. As a result, such tables as shown in tables 1, 2, and 4 are also effective
commonly to these cases. It should be noted that an eight-membered D2d(/C1)-
orbit of a C1-assembly is possible as an alternative extreme case.

On the same line as the reduction process shown in figure 15, we are able to
consider an equivalent process called coalescence, i.e., the process of the assem-
bled mandalas into 56, in which f1 and f5 coalesce into g1 and so on. The
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Figure 16. Nested mandala related to a mandala, an assembled mandala, and a coalesced mandala.

coalescence process indicates a molecule of Cs-symmetry to be counted once in
stereoisomer enumeration.

4.4.2. Fixed segments and fixed assemblies
As can be seen easily by their definitions, regular bodies of G-symmetry

and mandalas of G-symmetry have diagrammatically equivalent features from a
mathematical point of view. In particular, the comparison between segmented
regular bodies (cf. figure 15 for the D2d -symmetry) and assembled mandalas
(cf. figure 16 for the D2d -symmetry) reveals these equivalent features. The fea-
tures are more clearly demonstrated by regarding both the positions of a reg-
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ular body and the regular bodies of a mandala as “abstract” points which are
governed by an RRR or an LRR. Thereby, the segmentation of a regular body
and the assemblage of a mandala can be regarded as representing a mathemati-
cally equivalent procedure. Thus, a set of H-segments (cf. 2) in a regular body of
G-symmetry is determined to be an orbit governed by an RCR (H\)G by means
of a mandala (cf. 47). On the same line, a set of K-assemblies (cf. 47) in a man-
dala of G-symmetry is determined to be an orbit governed by a LCR G(/K) by
means of a nested mandala (55). This means that the set of segments governed
by an RCR (H\)G (cf. 2) and the set of assemblies governed by a LCR G(/K)

(cf. 47) are both characterized by FPVs described in section 2.2. If K = H, a
common FPV can be used because the RCR (H\)G and the LCR G(/H) are
regarded as equivalent, as described in theorem 1. Note that the symmetry of the
mandala determines the global symmetry G and the symmetry of each segment
determines the local symmetry H and that the symmetry of the nested mandala
determines the global symmetry G and the symmetry of each assembly deter-
mines the local symmetry K.

Example 19. The orbit A = {A1, A2, A3, A4} shown in figure 11 is exam-
ined by taking account of the SSG of D2d (equation (19)). Thereby, the num-
ber of fixed segments with respect to each subgroup of the SSG is obtained. For
example, by the restriction of the D2d -symmetry into Cs-symmetry, the two seg-
ments A1 and A3 are fixed but A2 and A4 are interchanged. It follows that the
mark of this case is determined to be 2. This is the fifth number of the corre-
sponding FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0), which is obtained by repeating this pro-
cedure to cover the SSG of D2d (equation (19)). Because the FPV is found at
the (Cs\)D2d -row of table 1, it shows that the four-membered orbit A is gov-
erned by the RCR (Cs\)D2d . It should be noted that the orbit A is concerned
with the substitution positions of the regular body at issue.

On the other hand, the orbit A∗ = {A∗
1, A∗

2, A∗
3, A∗

4} shown in figure 14
is examined by taking account of the SSG of D2d (equation (19)). Thereby, the
number of fixed assemblies with respect to each subgroup of the SSG is obtained
so as to give an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0). For example, the Cs-restriction
fixes two assemblies (i.e., A∗

1 and A∗
3) so as to give a mark (2), which is the fifth

number of the FPV. Because the FPV is found at the D2d(/Cs)-row of table 1,
the four-membered obit A∗ is concluded to be governed by the LCR D2d(/Cs).
It should be noted that the orbit A∗ is concerned with the transformulas of the
mandala at issue. ��

4.5. Subduction linking segmentation and assemblage

In the preceding discussions, segmentation in a regular body and assem-
blage in a mandala are treated rather separately. In the present subsection, we
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shall show that the superposition of segmentation and subduction causes assem-
blage in a mandala and that the consideration of assemblage in a mandala
results in the subduction of segmented regular bodies.

4.5.1. Superposition of segmentation and subduction
The effect of segmentation and that of subduction can be superposed

to generate a further modified mandala. The following example illustrates the
superposition of the segmentation shown in figure 11 onto the subduction shown
in figure 13.

Example 20. The mandala generated by the segmentation shown in figure 11
is superposed onto the mandala generated by the subduction (figure 13), where
the subduction pattern is omitted for the sake of simplicity. Thereby, we obtain
another mandala shown in figure 17, where the same mode of assemblage as
shown in figure 13 takes place to generate 65, which contains a set of four Cs-
assemblies, i.e., A∗ = {A∗

1, A∗
2, A∗

3, A∗
4}.

The set of four Cs-assemblies A∗ in 65 ( f ∗
1 ) is a four-membered orbit gov-

erned by the LCR D2d(/Cs), where the LCR is characterized by an FPV =
(4, 0, 0, 0, 2, 0, 0, 0, 0). This result is confirmed by the fact that 65 ( f ∗

1 ) exhibits
the same behavior as illustrated in the nested mandala shown in figure 14.

On the other hand, the set of four Cs-segments in each transformula (e.g.,
57), i.e., A = {A1, A2, A3, A4}, suffers from the subduction (Cs\)D2d ↓ Cs ,
which is associated with the Cs-assemblage. In agreement with equation (63), the
orbit A is divided into a one-membered suborbit {A1}, a two-membered suborbit
{A2, A4}, and another one-membered suborbit {A3}. Chemically speaking, if the
segment {A1} is substituted by a proligand A, each of {A2, A4} by a proligand B,
and {A3} by a proligand X, there emerges an allene derivative with AB2X, which
belongs to Cs-symmetry. ��

The following example illustrates the inversely ordered superposition of the
subduction shown in figure 13 onto the segmentation shown in figure 11.

Example 21. The D2d -symmetry of the mandala generated by the segmentation
shown in figure 11 is restricted into Cs , as shown in figure 18. This process is
equivalent to the superposition of the mandala generated by the subduction (fig-
ure 13), although the illustrated form is slightly different. Thereby, we obtain
another mandala shown in figure 18, where the same mode of assemblage as
shown in figure 13 takes place to generate 74. The resulting set of four Cs-assem-
blies, i.e., A∗ = {A∗

1, A∗
2, A∗

3, A∗
4} is governed by the LCR D2d(/Cs), which is

characterized by an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0).
On the same line as illustrated by example 20, the set of four Cs-segments

in each transformula (e.g., 66) suffers from the subduction (Cs\)D2d ↓ Cs , which
is associated with the Cs-assemblage. Thereby, the orbit A = {A1, A2, A3, A4} is
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Figure 17. Mandala modified by the superposition of Cs -segmentation and Cs -subduction. The
eight transformulas ( f1– f8) at its vertices are assembled into four assemblies, i.e., A∗

1 =
{ f1, f5},A∗

2 = { f2, f7}, A∗
3 = { f4, f8}, and A∗

4 = { f3, f6}. The alignment shown in this diagram, in
which solid circles are added to show the Cs -symmetry explicitly, corresponds to the right diagram

shown in figure 9. The full expression of the mandala is simplified into 65.

divided into two one-membered suborbits ({A1} and {A3}) and a two-membered
suborbit {A2, A4} in agreement with equation (63). On the same line as exam-
ple 20, the devision of A corresponds to an allene derivative with AB2X, which
belongs to Cs-symmetry. ��

Examples 20 and 21 can be discussed more chemically by the subduction of
the reduced mandala shown in figure 12.

Example 22. The mandala generated by the segmentation shown in figure 11 is
symmetrically equivalent to the reduced mandala shown in figure 12, where the
common D2d symmetry is confirmed by the comparison between 30 and 38.
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Figure 18. Subduction of a segmented mandala for representing the superposition of subduction
onto segmentation. The full expression of the mandala is simplified into 74.

The process discussed in example 21 is alternatively illustrated by the
subduction of each transformula (e.g., 4) contained in the reduced mandala
shown in figure 12. Thereby, we obtain another mandala shown in figure 19,
where the same mode of assemblage as shown in figures 17 or 18 takes place
so as to generate 83. The resulting set of four Cs-assemblies, i.e., A∗ =
{A∗

1, A∗
2, A∗

3, A∗
4}, is governed by the LCR D2d(/Cs), which is characterized by

an FPV = (4, 0, 0, 0, 2, 0, 0, 0, 0).
The orbit of four substitution positions {1, 2, 3, 4} in each transformula

(e.g., 75) suffers from the subduction (Cs\)D2d ↓ Cs , which is associated with
the Cs-assemblage. Thereby, the orbit is divided into two one-membered subor-
bits ({1} and {3}) and a two-membered suborbit {2, 4} in agreement with equa-
tion (63). On the same line as examples 20 and 21, the devision of the orbit
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Figure 19. Reduced mandala after assemblage. The eight transformulas ( f1– f8) are assembled into
four assemblies, i.e., A∗

1 = { f1, f5},A∗
2 = { f2, f7},A∗

3 = { f4, f8},and A∗
4 = { f3, f6}. The full

expression of the mandala is simplified into 83.

corresponds to an allene derivative with AB2X, which belongs to Cs-symme-
try. ��

4.5.2. Subduction due to assemblage
The subduction of a regular body shown in figure 13, the subduction of a

segmented regular body shown in figures 17 and 18, and the subduction of a
reduced regular body shown in figure 19 are summarized by the superposition
of subduction patterns onto figure 15. Thereby, we obtain figure 20.

The non-assembled mandalas (29, 30, and 38) shown in figure 15 indicates
no subduction of regular bodies (e.g., 1), segmented regular bodies (e.g., 2), and
reduced regular bodies (e.g., 4), where the corresponding RCRs are characterized
by the global symmetry D2d .

On the other hand, the assembled mandala (47, 65, 74, and 83) shown
in figure 20 indicates the Cs-subduction of regular bodies (e.g., 39), segmented
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regular bodies (e.g., 57 and 66), and reduced regular bodies (e.g., 75), where the
corresponding RCRs are characterized by the global symmetry Cs .

For the sake of convenience for further discussions, theorem 5 should be
restated so as to demonstrate its chemical meaning more clearly in the following
theorem:

Theorem 7. One assembled mandala of G-symmetry having |G|/|K| of K-
assemblies corresponds to one molecule of K-symmetry, where the orbit of the
K-assemblies is governed by the LCR G(/K).

Note that the assembled mandala of G-symmetry described in theorem 7
may be derived by the subduction of regular bodies, segmented regular bodies,
or reduced regular bodies, as exemplified in figure 20. The subduction of reduced
regular bodies has a more chemical meaning than the others.

Figure 20. Assembled mandala related to a subduced regular body, a segmented subduced regular
body, and a reduced subduced regular body.
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5. Combinatorial enumeration

5.1. Row view for evaluating fixed-point vectors

According to theorem 7, the FPV for the LCR G(/K) is used to char-
acterize one molecule of K-symmetry, which is derived from a skeleton of
G-symmetry. For example, suppose that each solid circle is replaced by X and
each open circle is replaced by H in figure 19. This procedure is regarded as
a function f , which is specified as f (1) = X, f (2) = H, f (3) = H, and
f (4) = H. Thereby, we obtain figure 21, where the orbit of assemblies, i.e., A∗ =
{A∗

1, A∗
2, A∗

3, A∗
4}, is governed by the LCR D2d(/Cs), which is characterized by

an FPV = (4, 0, 0, 2, 0, 0, 0, 0) (cf. table 1). The FPV gives the coefficients for
the terms 4H3X for D2d and 2H3X for Cs so that it corresponds to one allene
derivative with mono-X-substitution.

Another procedure to realize the Cs-symmetry is possible on the basis of
figure 19, where another function f is specified as f (1) = X, f (2) = p, f (3) =
H, and f (4) = p. Thereby, we obtain figure 22, where the orbit of assemblies,
i.e., A∗ = {A∗

1, A∗
2, A∗

3, A∗
4}, is governed by the LCR D2d(/Cs), which is char-

acterized by an FPV = (4, 0, 0, 2, 0, 0, 0, 0) (cf. table 1). The FPV gives the

Figure 21. Reduced mandala with Cs -transformulas derived from an allene skeleton, where a spon-
taneous assemblage occurs, as shown in a simplified assembly (92). Thus, the Cs -transformulas
are spontaneously assembled into four assemblies (84/85, 86/87, 88/89, and 90/91), which construct
a four-membered orbit governed by the CR D2d (/Cs). The orbit (representing a mono-X-allene

molecule) is characterized by a fixed-point vector: (4, 0, 0, 2, 0, 0, 0, 0).
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coefficients for the terms 4HXpp for D2d and 2HXpp Cs so that it corresponds
to one allene derivative with the molecular formula HXpp.

Figure 22. Reduced mandala with Cs -transformulas derived from an allene skeleton, where a spon-
taneous assemblage occurs, as shown in a simplified assembly (101). Thus, the Cs -transformulas
are spontaneously assembled into four assemblies (93/94, 95/96, 97/98, and 99/100), which construct
a four-membered orbit governed by the CR D2d (/Cs). The orbit (representing an allene molecule

with HXpp) is characterized by a fixed-point vector: (4, 0, 0, 2, 0, 0, 0, 0).

It should be noted a further function f (i.e., f (1) = X, f (2) = p, f (3) =
H, and f (4) = p) generated another achiral derivative of Cs-symmetry on the
basis of figure 19. This is an example of pseudoasymmetic cases.

For H2X2, a C2v-molecule and a C′
2-molecule can exist so that they are

characterized, respectively, by an orbit of C2v-assemblies and an orbit of C′
2-

assemblies in assembled mandalas. Hence, the two-membered orbit of C2v-
assemblies in an assembled mandala is characterized by an FPV = (2, 2, 0, 2,

0, 2, 0, 0) which corresponds to the LCR D2d(/C2v). The four-membered orbit of
C′

2-assemblies, which is governed by the LCR D2d(/C′
2), is characterized by an

FPV = (4, 0, 2, 0, 0, 0, 0, 0) for another assembled mandala. It follows that the
case of H2X2 is characterized by the summed FPV = (6, 2, 2, 2, 0, 2, 0, 0). The
summed FPV gives the coefficients for the terms 6H2X2 for D2d , 2H2X2 for C2,
etc.

Next, we consider the case of H2p2 (H2p2), which generates a di-p-substi-
tuted allene derivative of C′

2-symmetry (102), as shown in figure 23. The sym-
metry operations of D2d transform the reference transformula 102 ( f1) into the
transformulas (102–109, i.e., f1– f8) to give a reduced mandala (figure 23). The
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Figure 23. Reduced mandala with C′
2-transformulas derived from an allene skeleton, the vertices

of which construct an orbit governed by the subduction of the RCR (Cs\)D2d ↓ C′
2 = 2(C1\)C′

2).
The C′

2-transformulas are assembled into four assemblies (102/105, 106/109, 103/108, and 104/107),
which construct a four-membered orbit governed by the LCR D2d (/C′

2). The orbit (representing a
di-X-allene molecule) is characterized by marks (4, 0, 2, 0, 0, 0, 0, 0).

mandala is assembled to give four assemblies, B∗
1 = { f1, f2} (102/105), B∗

4 =
{ f5, f6} (103/108), B∗

3 = { f4, f3} (106/109), and B∗
2 = { f8, f7} (104/107), each of

which represents a C′
2-molecule permuted under D2d .

The resulting set of the four assemblies, i.e., B∗ = {B∗
1, B∗

4, B∗
3, B∗

2}, is an
orbit governed by the LCR D2d(/C′

2) as shown in 110. The four-membered
D2d(/C′

2)-orbit (B∗) is fixed by the restriction into each subgroup of D2d to give
an FPV = (4, 0, 2, 0, 0, 0, 0, 0). Because the term H2p2 (for B∗

1 and B∗
3) is trans-

formed into H2p2 (for B∗
2 and B∗

4) by improper rotations, each fixed point (in an
abstract meaning) should be counted by using the term (1/2)(H2p2 + H2p2) as a
unit. Hence, the FPV is represented by the terms (4/2)(H2p2 + H2p2) for D2d ,
(2/2)(H2p2 + H2p2) for C′

2, etc.
There exists another di-p-substituted allene derivative (111) with H2p2

(H2p2), which belongs to C2-symmetry, as shown in figure 24. Thus, the symme-
try operations of D2d transform 111 ( f1) into the transformulas (111–118, i.e.,
f1– f8) to produce the corresponding reduced mandala with assemblage (figure
24).

The resulting set of the four assemblies, i.e., C∗
1 = { f1, f4} (111/115), C∗

2 =
{ f5, f8} (112/116), C∗

3 = { f7, f6} (113/117), and C∗
4 = { f2, f3} (114/118), is an

orbit governed by the LCR D2d(/C2). The four-membered D2d(/C2)-orbit, i.e.,
C∗ = {C∗

1, C∗
2, C∗

3, C∗
4}, in the simplified reduced mandala (119) is fixed by the
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Figure 24. Reduced mandala with C2-transformulas derived from an allene skeleton, the vertices
of which construct an orbit governed by the subduction of the RCR (Cs\)D2d ↓ C2 = 2(C1\)C2.
The C2-transformulas are assembled into four assemblies (111/115, 112/116, 113/117, and 114/118),
which construct a four-membered orbit governed by the LCR D2d (/C2). The orbit (representing a

di-p-allene molecule) is characterized by marks (4, 4, 0, 0, 0, 0, 0, 0).

restriction into each subgroup of D2d to give an FPV = (4, 4, 0, 0, 0, 0, 0, 0).
Because the term H2p2 (for C∗

1 and C∗
4) is transformed into H2p2 (for C∗

2 and
C∗

3) by improper rotations, each fixed point (in an abstract meaning) should be
counted by using the term (1/2)(H2p2 + H2p2) as a unit. Hence, The FPV is rep-
resented by the terms (4/2)(H2p2 + H2p2) for D2d , (4/2)(H2p2 + H2p2) for C2,
etc.

In stereoisomer enumeration, the two cases of H2p2 (H2p2) shown in fig-
ures 23 and 24 appear at the same time so as to give a summed FPV =
(8, 4, 2, 0, 0, 0, 0, 0). Hence The summed FPV is represented by the terms
(8/2)(H2p2 + H2p2) for D2d , (4/2)(H2p2 + H2p2) for C2, (2/2)(H2p2 + H2p2) for
C′

2, etc.
The above-described procedure for evaluating summed FPVs can easily be

extended into general cases, in which a given skeleton of G-symmetry contains
one or more orbits O(α) of substitution positions. The orbit O(α) accommodates
achiral ligands selected from the following set:

X(α) = {X1, X2, . . . , Xx } (81)

as well as chiral ligands selected from the following set:

p(α) = {p1, p2, . . . , pp; p1, p2, . . . , pp}, (82)
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where pi and pi represent a pair of enantiomers (i = 1, 2, . . . , p). Note that,
although each ligand should be specified by the index α, its specification is
omitted for the sake of simplicity. When the orbit O(α) accommodates θ1 of
X1, . . . , θx of Xx ; θ ′

1 of p1, . . . , θ
′
p of pp; and θ ′′

1 of p1, . . . , θ
′′
p of pp, the cor-

responding weight (molecular formula) is represented by the following equation:

W (α)
θ = Xθ1

1 . . . Xθx
x p

θ ′
1

1 . . . p
θ ′

p
p p

θ ′′
1

1 . . . p
θ ′′

p
p , (83)

where the powers satisfies the following partition:

[θ ](α) : (θ1 + · · · + θx ) + (θ ′
1 + · · · + θ ′

p) + (θ ′′
1 + · · · + θ ′′

p) = |O(α)|. (84)

Because the sets represented by equations (81) and (82) may be different
according to the index α for O(α), the weight (equation (83)) and the partition
(equation (84)) depend on the index α. As result, the total weight is represented
as follows:

Wθ =
∏
α

W (α)
θ . (85)

Strictly speaking, equation (85) should be modified to treat chiral molecules as
well as achiral ones. Thus, the total weight is represented as follows:

Wθ = 1
2

(∏
α

W (α)
θ +

∏
α

W
(α)

θ

)
, (86)

where we place

W
(α)

θ = Xθ1
1 . . . Xθx

x p
θ ′′

1
1 . . . p

θ ′′
p

p p
θ ′

1
1 . . . p

θ ′
p

p . (87)

Obviously, if we place θ ′
i = θ ′′

i (i = 1, 2, . . . , p), we obtain W (α)
θ = W

(α)

θ so as to
give equation (85).

Suppose that the G-symmetry of the skeleton is characterized by the follow-
ing SSG:

SSGG = {G1(= C1), G2, . . . , Gi , . . . , Gs(= G)}, (88)

where we place |G1| � |G2| � · · · � |Gi | � · · · � |Gs | and the corresponding
mark table is represented as follows:

MG = (mi j ) =

⎛
⎜⎜⎜⎜⎜⎝

m11 · · · m1 j · · · m1s
...

...
...

mi1 · · · mi j · · · mis
...

...
...

ms1 · · · msj

Mark table (MG)

· · · mss

⎞
⎟⎟⎟⎟⎟⎠

. (89)
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Let the symbol Bθ i represent the number of Gi -molecules with the weight
Wθ . Because each of the Gi -molecules is characterized by the FPV = (mi1, . . . ,

mi j , . . . , mis), the corresponding summed FPV = (ρθ1, . . . , ρθ j , . . . , ρθs) is repre-
sented as follows:

(ρθ1, . . . , ρθ j , . . . , ρθs) =
(∑

i

Bθ i mi1, . . . ,
∑

i

Bθ i mi j , . . . ,
∑

i

Bθ i mis

)
, (90)

where Gi runs over the SSG (equation (88)) for a fixed Wθ . When the [θ ] runs
over the partition shown in equation (84), we obtain the following matrix repre-
sentation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 · · · ρ1 j · · · ρ1s
ρ21 · · · ρ2 j · · · ρ2s
...

...
...

ρθ1 · · · ρθ j · · · ρθs
...

...
...

ρ|θ |1 · · ·ρ|θ | j

FPM

· · · ρ|θ |s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B11 · · · B1i · · · B1s
B21 · · · B2i · · · B2s
...

...
...

Bθ1 · · · Bθ i · · · Bθs
...

...
...

B|θ |1 · · · B|θ |i
ICM

· · · B|θ |s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

m11 · · · m1 j · · · m1s
...

...
...

mi1 · · · mi j · · · mis
...

...
...

ms1 · · · msj

Mark table (MG)

· · · mss

⎞
⎟⎟⎟⎟⎟⎠

,(91)

where the first matrix is called a FPM and the second is called an isomer-
counting matrix (ICM).

Because the mark table has its inverse, we place M−1
G = (mi j ). Thereby,

equation (91) is converted into the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B11 · · · B1i · · · B1s
B21 · · · B2i · · · B2s
...

...
...

Bθ1 · · · Bθ i · · · Bθs
...

...
...

B|θ |1 · · · B|θ |i
ICM

· · · B|θ |s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 · · · ρ1 j · · · ρ1s
ρ21 · · · ρ2 j · · · ρ2s
...

...
...

ρθ1 · · · ρθ j · · · ρθs
...

...
...

ρ|θ |1 · · ·ρ|θ | j

FPM

· · · ρ|θ |s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

m11 · · · mi1 · · · ms1
...

...
...

m1 j · · · mi j · · · msj
...

...
...

m1s · · · mis

Inverse mark table (M−1
G )

· · · mss

⎞
⎟⎟⎟⎟⎟⎠

.(92)

This equation means that, if we evaluate each element ρθ j of the FPM, we
are able to calculate the number Bθ i of the ICM. For this purpose, we shall
adopt the column view of the FPM, as discussed in the next section, where we
take account of the column vector (ρ1 j , ρ2 j , . . . , ρ|θ | j )

T for the jth column of
the FPV.
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5.2. Column view for evaluating fixed-point vectors

For the column view of the FPM appearing in equation (92), we should
remember that the jth column (ρ1 j , ρ2 j , . . . , ρ|θ | j )

T is concerned with the sub-
duction into the subgroup G j . It is convenient that the jth column is evaluated
in the form of a generating function represented by

∑
θ

ρθ j Wθ as shown in the

following example.

Example 23. According to theorem 7, one reduced mandala with Cs-assem-
blage (83) corresponds to one Cs-molecule. The Cs-assemblage results in the
subduction of the (Cs\)D2d -orbit, which is represented by (Cs\)D2d ↓ Cs =
2(Cs\)Cs + (C1\)Cs . The corresponding USCI-CF (a2

1c2) controls the substitu-
tion mode of atoms and/or (pro)ligands according to its sphericity indices (i.e.,
the chirality fittingness of the orbit at issue).

Let us consider H, X, p, and p as substituents. Then, a H3X-molecule
belongs to Cs-symmetry, as found in figure 21, where two of the one-membered
homospheric orbit characterized by the sphericity index a1 accommodate H and
X distinctly, while the two-membered enantiospheric orbit characterized by c2
accommodates a set of two hydrogens. This substitution process is shown in the
top scheme of figure 25, where two transformulas (84 and 88) ascribed to the
same Cs-molecule are generated. Note that the subduction into Cs corresponds
to the Cs-assemblage selecting two intermediate transformulas, i.e., 75 ( f1) and
79 ( f4), where the substitution obeys a function, f (1) = X, f (2) = f (3) =
f (4) = H. This means that the corresponding mark is equal to 2, which is
expressed by the term 2H3X.

On the other hand, the substitution due to a function f , i.e., f (1) =
X, f (2) = p, f (3) = p, and f (4) = H (cf. figure 22), generates two trans-
formulas (93 and 97), which are ascribed to another Cs-molecule having a
molecular formula HXpp (the middle scheme of figure 25). The two of the
one-membered homospheric orbits characterized by the sphericity index a1
accommodate H and X distinctly, whereas the two-membered enantiospheric
orbit characterized by c2 accommodates a pair of p and p. This means that
the corresponding mark is equal to 2, which is expressed by the term 2HXpp.
Another Cs-molecule with the molecular formula HXpp can be generated by a
function, f (1) = X, f (2) = p, f (3) = p, and f (4) = H. The resulting two
transformulas (120 and 121) shown as the bottom scheme of figure 25) indi-
cates that the corresponding mark is equal to 2, which is expressed by the term
2HXpp. The middle scheme and the bottom one show pseudoasymmetry, which
is expressed by the summed term 4HXpp.

The above discussions indicate that the one-membered homospheric orbit
permits H and X in agreement with the sphericity index a1, while the two-
membered enantiospheric orbit permits two Hs, two Xs, or a pair of p and p in
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Figure 25. Two transformulas (84 and 84) ascribed to a Cs -molecule with the formula H3X as well
as a set of two transformulas (93 and 97) and another set of two transformulas (120 and 121), both

ascribed to Cs -molecules with the formula HXpp.

agreement with the sphericity index c2. The modes of permission are represented
by the following ligand inventories:

a1 = H + X, (93)

c2 = H2 + X2 + 2pp. (94)

These are introduced into the USCI-CF to give the following generating
function:
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a2
1c2 = (H + X)2(H2 + X2 + 2pp)

= (H4 + X4) + (2H3X + 2HX3) + 2H2X2 + 2H2pp + 2X2pp + 4HXpp.

(95)

The coefficient 2 of the term H3X and the coefficient 4 of the term HXpp
are identical with the values evaluated above in detail. The generation function
shown by 95 exemplifies a mode of column view, which corresponds to the gen-
eral equation

∑
θ

ρθ j Wθ .

It should be noted that equation (95) contains the terms H4 and X4, which
are ascribed to C2v-molecules. Because the C2v is a supergroup of Cs , the C2v-
molecules are also fixed under the subduction into Cs so as to give the mark 1 as
the coefficients of the terms H4 and X4. ��

The column view described in example 23 can be extended into general
cases in which one or more orbits of substitution positions participate in stereo-
isomer enumeration. Suppose that the orbit O(α) governed by the RCR (G�\)G
is restricted into its subgroup G j , where the restriction is determined by the sub-
duction (G�\)G ↓ G j . The subduction (G�\)G ↓ G j is calculated according to
equation (57) so as to be characterized by the corresponding USCI-CF, i.e.,

USCI-CF(G j ; $d)(α), (96)

where the symbol $d indicates ad , bd , or cd (cf. example 5). When the orbit O(α)

runs to cover all of the substitution positions of the skeleton (i.e., O = ⋃
α O(α)),

the multiplication of the USCI-CFs (equation (96)) gives the following product:

SCI-CF(G j ; $d) =
∏
α

USCI-CF(G j ; $d)(α), (97)

which are called a subduced cycle index with chirality fittingness (SCI-CF) accord-
ing to Chapter 19 of Fujita’s book [12]. By using the SCI-CF (equation (97)), the
column view for the FPM provides us with the following theorem:

Theorem 8. Substituents are selected from the sets represented by equations
(81) and (82). The weight (equation (83)) and the partition (equation (84)) are
used to characterize stereoisomers to be enumerated. A generating function for
calculating ρθ j (equation (91) or equation (92)) is obtained as follows:

∑
[θ ]

ρθ j Wθ = SCI-CF(G j ; $d), (98)
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where the sphericity indices ($d = ad , bd , or cd ) in the SCI-CF are substituted by
the following ligand inventories:

a(α)
d = Xd

1 + · · · + Xd
x , (99)

c(α)
d = Xd

1 + · · · + Xd
x + 2(pd/2

1 pd/2
1 + · · · pd/2

p pd/2
p ), (100)

b(α)
d = (Xd

1 + · · · + Xd
x ) + (pd

1 + · · · + pd
p) + (pd

1 + · · · + pd
p), (101)

where the index α of each inventory corresponds to the USCI-CFs shown on the
right-hand side of equation (97).

This theorem is equivalent to lemma 19.2 of Fujita’s book [12]. The ligand
inventories used in theorem 8 can be varied for every orbits O(α), as discussed
in Chapters 14 and 19 of Fujita’s book [12].

Theorem 8 gives the values for the jth column (ρ1 j , ρ2 j , . . . , ρ|θ | j )
T , which

is concerned with the subduction into the subgroup G j . By moving j from 1 to
s, all of the values of ρθ j in the FPM (equation (92)) are calculated. Thereby,
the ICM is calculated by means of equation (92). The procedure described here
is a diagrammatical formulation of the SCI method, which has been alternatively
disclosed in terms of a more mathematical formulation in Chapter 19 of Fujita’s
book [12].

6. Reordered multiplication tables

Mandalas of G-symmetry can be directly correlated to the multiplication
table of the G. For this type of correlation, we have to consider reordered mul-
tiplication tables. Thereby, the mandalas clarify concurrent behaviors of RCRs
and LCRs through such reordered multiplication tables.

Example 24. The reduced mandala (101) shown in figure 22, where the reduc-
tion is based on the Cs-segmentation and the subduction stems from the Cs-
assemblage, is correlated to the reordered multiplication table shown in figure 26.
According to the Cs-segmentation, the rows of the multiplication table (figure 2)
are segmented in terms of the right coset decomposition shown in equation (20).
The resulting right cosets correspond to the (secondary) positions {1–4} (cf. fig-
ure 19), which are generated by the reduction of the segments A1, A2, A3, and
A4 (cf. figure 17). This correspondence is shown in the left-most part of figure
26.

Then, the columns of the multiplication table (figure 2) are divided (assem-
bled) in terms of the left coset decomposition shown in equation (43). By using
the function f (i.e., f (1) = X, f (2) = p, and f (3) = H, f (4) = p) or by plac-
ing X on A1, p on A2, H on A3, and p on A4, the transformulas (93–100) are
generated as shown in figure 22. Each of the transformulas (93–100) corresponds
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Figure 26. Reordered multiplication table of D2d for showing a reduced mandala with Cs -segmen-
tation and Cs -assemblage (cf. figure 22).

to each column of the reordered multiplication table (figure 26). The division of
the columns corresponds to the Cs-assemblage, which generates the assemblies
A∗

1, A∗
2, A∗

3, and A∗
4 (cf. 101), as shown in the bottom part of the reordered mul-

tiplication table (figure 26). ��

Example 25. Let us next examine the reduced mandala shown in figure 23,
where the reduction is based on the Cs-segmentation and the subduction stems
from the C′

2-assemblage. The reduced mandala is correlated to the reordered
multiplication shown in figure 27.

On the same line as example 24, the rows of the multiplication table (figure
2) are segmented according to the Cs-segmentation, which is based on the right
coset decomposition shown in equation (20). The correspondence of the result-
ing right cosets to the (secondary) positions {1, 2, 3, 4} (cf. figure 23) is shown in
the left-most part of figure 27. The numbering of the positions is correlated to
that of the segments, A1, A2, A3, and A4.

The columns of the multiplication table (figure 2) are divided (assembled)
in terms of the left coset decomposition:

D2d = C′
2 + S3

4C′
2 + C2(3)C′

2 + S4C′
2 (102)

= {1, 2} + {7, 8} + {4, 3} + {6, 5}, (103)
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Figure 27. Reordered multiplication table of D2d for showing a reduced mandala with Cs -segmen-
tation and C′

2-assemblage (cf. figure 23).

which is shown at the top part of figure 27. By using the function f (i.e., f (1) =
p, f (2) = p, and f (3) = H, f (4) = H) or by placing p on A1, p on A2, H on
A3, and H on A4, the transformulas (102–109) are generated as shown in fig-
ure 23. The transformulas (102–109), respectively, correspond to the columns of
the reordered multiplication table (figure 27). The division of the columns corre-
sponds to the C′

2-assemblage, which generates the assemblies B∗
1, B∗

2, B∗
3, and B∗

4
(cf. 110). These results are shown in the bottom part of the reordered multiplica-
tion table (figure 27). ��

The results described in examples 24 and 25 can be easily extended into
general cases, as summarized in a theorem:

Theorem 9. A mandala of G-symmetry with an H-segmentation and an K-
assemblage is correlated to the reordered multiplication of G in which the rows
(second operations) are divided (segmented) on the basis of the right coset
decomposition of G by H and the columns (first operations) are divided (assem-
bled) on the basis of the left coset decomposition of G by K. The mandala of
G-symmetry with an H-segmentation and a K-assemblage represents one mole-
cule of the K-symmetry which is derived from a G-skeleton with a (H\)G-orbit
of substitution positions.



S. Fujita / Concepts of mandalas as diagrammatical expressions 533

Theorem 9 holds true for cases in which the G-skeleton has one or more orbits
represented by

∑
H
αH(H\)G, where the symbol αH represents the multiplicity of

the (H\)G-orbits.

7. Conclusions

Right coset representations (H\)G and LCR G(/H) are introduced by start-
ing from the right and left coset decompositions of the group G by its subgroup
H. The sphericity of the RCR (or the LCR) is defined as being homospheric for
an achiral group G and an achiral group H, being enantiospheric for an achi-
ral group G and a chiral group H, and being hemispheric for a chiral group G
and a chiral group H. After defining the mark of each RCR or LCR during the
restriction into a subgroup K of G, the K is moved to cover G up to conjugate
subgroups so as to give a FPV for the RCR (or the LCR).

A regular body of G-symmetry is defined as a diagrammatical expression
for a RRR (C1\)G, which is an extreme case of RCRs. The H-segmentation
of the regular body as a reference is defined to specify the RCR (H\)G, which
controls |G|/|H| of the resulting H-segments. A mandala is defined as a nested
regular body of G-symmetry, in which regular bodies generated by every sym-
metry operations of G on the reference regular body are placed on the vertices
of a hypothetical regular body of G-symmetry. By regarding each H-segment as
a substitution position, the H-segmented regular body is reduced into a reduced
regular body, which generates a reduced mandala as a diagrammatical expression
of a molecule.

The effect of a K-subduction on regular bodies of a mandala (or a reduced
mandala) results in the K-assemblage of the mandala (or the reduced mandala),
where |G|/|K| of the resulting K-assemblies are governed by the LCR G(/K).
The FPV for each mandala (or reduced mandala) in row view and the number
of fixed points of K-assembled mandalas (or K-assembled reduced mandalas) in
column view are compared to accomplish combinatorial enumeration of stereoi-
somers. The relationship between a mandala and a reordered multiplication table
is discussed.

It is to be emphasized that regular bodies and their segmentation are
diagrammatical tools for discussing intramolecular stereochemistry, while mand-
alas and their assemblage are diagrammatical tools for discussing intermolecu-
lar stereochemistry (stereoisomerism). The subduction of coset representations
is concluded to bridge between the regular bodies and the mandalas. Thus, the
concept of mandala reinforces the versatility of Fujita’s USCI (unit-subduced-
cycle-index) approach [12].



534 S. Fujita / Concepts of mandalas as diagrammatical expressions

References

[1] K. Mislow and M. Raban, Top. Stereochem. 1 (1967) 1–38.
[2] E.L. Eliel, J. Chem. Educ. 57 (1980) 52–55.
[3] K. Mislow and J. Siegel, J. Am. Chem. Soc. 106 (1984) 3319–3328.
[4] E. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds (Wiley, New York, 1994).
[5] N. North, Principles and Applications of Stereochemistry (Stanley Thornes, Cheltenham, 1998).
[6] D.G. Morris, Stereochemistry (Royal Society of Chemistry, Cambridge, 2001).
[7] J. Eames and J. M. Peach, Stereochemistry at a Glance (Blackwell, Oxford, 2003).
[8] J. Sheehan, Can. J. Math. 20 (1968) 1068–1076.
[9] J. Brocas, J. Am. Chem. Soc. 108 (1986) 1135–1145.
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